scholarly journals MSWI Bottom Ash Application to Resist Sulfate Attack on Concrete

2019 ◽  
Vol 9 (23) ◽  
pp. 5091 ◽  
Author(s):  
Yongzhen Cheng ◽  
Yun Dong ◽  
Jiakang Diao ◽  
Guoying Zhang ◽  
Chao Chen ◽  
...  

This research provides a strategy for partially replacing cement with municipal solid waste incineration (MSWI) bottom ash (BA) to improve the performance of concrete against sulphate attack. Mortar strength tests were performed firstly to evaluate the hydration activity of the ground BA. Concrete specimens were cured in standard conditions and immersed in a solution that contained 10% sodium sulfate. Then, the compressive strength of these specimens was measured to investigate the mechanical properties and durability of the concrete. Next, the capillary porosity of the concrete was determined from the volume fractions of water lost in specimens. Finally, the transport of the sulphate solution in concrete was analyzed using capillary rise, crystallization rate, and solution absorption tests. The results indicated that BA had a certain hydration activity. The equivalent replacement of cement by BA decreased the compressive strength of the specimens but increased the durability of the concrete. There was an excellent correlation between capillary rise height, sulfate solution absorption amount, crystallization rate, and coarse capillary porosity. The addition of BA can decrease the coarse capillary porosity and further slow the capillary transport and crystallization of sulfate solution in concrete. Overall, the replacement of cement with BA can improve the durability of concrete and actualize the utilization of MSWI residues as a resource.

2009 ◽  
Vol 620-622 ◽  
pp. 631-634
Author(s):  
Woo Keun Lee ◽  
Eun Zoo Park ◽  
Ji Hyeon Lee ◽  
Yeong Seok Yoo

In this work, inorganic paste was made from melting slag (MS) of MSWI ash and MSWI bottom ash (MBA) by geopolymer technique. Heavy metals such as Pb and Cu are highly contained in MBA. In the view of environmental protection and resource conservation, recycling of MSWI ash is desirable. MS and MBA were mixed to make inorganic paste. Compressive strength was measured to evaluate the characteristics of inorganic paste after the period of 1, 3 and 7day. Compressive strength of almost 90 MPa was obtained at the mixing ratio of MS : MBA = 9 : 1. And the crystalloid and crystal structure was analyzed by FTIR and XRD. Korea Standard leaching Test (KSLT) is also used to evaluate the environmental safety of inorganic paste. The leached concentration of Pb and Cu were 0.44 ppm and 0.15 ppm, respectively. According to this result, heavy metals were safety immobilized and stabilized.


2020 ◽  
Vol 38 (8) ◽  
pp. 868-875
Author(s):  
Marc Antoun ◽  
Frédéric Becquart ◽  
Najib Gerges ◽  
Georges Aouad

Municipal solid waste incineration generates large quantities of bottom ash that should be recycled. Current use of municipal solid waste incineration bottom ash (MSWI-BA) in cementitious materials is mostly in Ordinary Portland Cement (OPC). This paper considers using MSWI-BA as sand substitution in Calcium Sulfoaluminate Cement (CSA) as an alternative to OPC. A comparison between OPC and CSA mortars containing 0–2 mm MSWI-BA is conducted. The MSWI-BA used was treated to remove the ferrous and non-ferrous metals in order to obtain a better mineral fraction. Different percentages (0%, 25%, 50%, 75%, and 100%) of standard sand were substituted by MSWI-BA based on equivalent volume. Experimental results showed that the compressive strength and porosity of the CSA mortars were superior to OPC after substitution at 1, 7, 28, and 90 days. The compressive strength of OPC mortars with 25% substitution decreased by 40% compared to 11% for CSA mortars at 90 days. This is due to the difference in pH between the two cement pastes as OPC in contact with the MSWI-BA leads to a reaction with the aluminum content which releases hydrogen gas, increases the porosity, and decreases the compressive strength.


2014 ◽  
Vol 804 ◽  
pp. 15-18
Author(s):  
Yeong Geum Son ◽  
Woo Keun Lee

In this work, pastes were prepared from slag and MSWI bottom ash by geopolymer technique. And its physical property was evaluated with mixing ratio of sodium silicate and potassium silicate. The amounts of leaching products, such as silica, alumina and calcium ions were changed for mixing ratio of raw materials. The compressive strength was increased with the increment of leaching amount of silica, alumina and calcium ions.


Author(s):  
Nguyen Huu May ◽  
Huynh Trong Phuoc ◽  
Le Thanh Phieu ◽  
Ngo Van Anh ◽  
Chau Minh Khai ◽  
...  

This study presents an experimental investigation on the recycling of waste incineration bottom ash (IBA) as a fine aggregate in the production of interlocking concrete bricks (ICB). Before being used, the concentration of heavy metal in IBA was determined to confirm it is a non-toxic material. In this study, the IBA was used to replace crushed sand (CSA) in the brick mixtures at different replacement levels of 0%, 25%, 50%, 75%, and 100% (by volume). The ICB samples were checked for dimensions, visible defects, compressive strength, bending strength, water absorption, and surface abrasion in accordance with the related Vietnamese standards. The test results demonstrated that the IBA used in this study was a non-toxic material, which can be widely used for construction activities. All of the ICB samples prepared for this study exhibited a nice shape with consistent dimensions and without any visible defects. The incorporation of IBA in the brick mixtures affected engineering properties of the ICB samples such as a reduction in the compressive strength and bending strength and an increment in water absorption and surface abrasion of the brick samples. As a result, the compressive strength, bending strength, water absorption, and surface abrasion values of ICB samples at 28 days were in the ranges of 20.6 – 34.9 MPa, 3.95 – 6.62 MPa, 3.8 – 7.2%, and 0.132 – 0.187 g/cm2, respectively. Therefore, either partial or full replacement of CSA by IBA, the ICB with grades of M200 – M300 could be produced with satisfying the TCVN 6476:1999 standard in terms of dimensions, visible defects, compressive strength, water absorption, and surface abrasion. These results demonstrated the high applicability of the local IBA in the production of the ICB for various construction application purposes. Keywords: interlocking concrete brick; waste incineration bottom ash; visible defect; compressive strength; bending strength; water absorption; surface abrasion.


2020 ◽  
Vol 1010 ◽  
pp. 653-658
Author(s):  
Roshazita Che Amat ◽  
Khairul Nizar Ismail ◽  
Khairel Rafezi Ahmad ◽  
Norlia Mohamad Ibrahim

Municipal solid waste incinerators (MSWI) produce by products which can be classified as bottom and fly ashes. The bottom ash accounts for 85-90 % of solid product resulting from MSW combustion. The objective of this study was to assess the feasibility of application of municipal solid waste incineration (MSWI) bottom ash as a supplementary cementations material for the preparation of blended cement. The used of bottom ash as a research material is caused by substances contained in cement is almost the same with bottom ash. Bottom ash was found to have some reactivity, but without greatly affecting the hydration process of OPC at 10 % replacement with 10% metakaolin is required to be used in the production of concrete in order to improve strength.


Ceramics ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 1-11
Author(s):  
Patricia Rabelo Monich ◽  
Hugo Lucas ◽  
Bernd Friedrich ◽  
Enrico Bernardo

Material from the electric arc furnace smelting of municipal solid waste incineration (MSWI) bottom ash was easily converted into highly porous glass-ceramics by a combination of inorganic gel casting and sinter-crystallization at 1000 °C. In particular, the gelation of aqueous suspensions of fine glass powders, transformed into “green” foams by intensive mechanical stirring, occurred with a limited addition of alkali activator (1 M NaOH). The products coupled the stabilization of pollutants with good mechanical properties (e.g., compressive strength approaching 4 MPa). Interestingly, they could be used also as raw material for new glass-ceramic foams, obtained by the same gel casting and sintering method, with no degradation of chemical stability. Limitations in the crushing strength, derived from the limited viscous flow densification of semi-crystalline powders, were overcome by mixing powders from recycled foams with 30 wt% soda-lime glass. The new products finally featured an even higher strength-to-density ratio than the foams from the first cycle.


Sign in / Sign up

Export Citation Format

Share Document