Effect on Compressive Strength by Mixing Ratio of MSWI Melting Slag/Bottom Ash

2009 ◽  
Vol 620-622 ◽  
pp. 631-634
Author(s):  
Woo Keun Lee ◽  
Eun Zoo Park ◽  
Ji Hyeon Lee ◽  
Yeong Seok Yoo

In this work, inorganic paste was made from melting slag (MS) of MSWI ash and MSWI bottom ash (MBA) by geopolymer technique. Heavy metals such as Pb and Cu are highly contained in MBA. In the view of environmental protection and resource conservation, recycling of MSWI ash is desirable. MS and MBA were mixed to make inorganic paste. Compressive strength was measured to evaluate the characteristics of inorganic paste after the period of 1, 3 and 7day. Compressive strength of almost 90 MPa was obtained at the mixing ratio of MS : MBA = 9 : 1. And the crystalloid and crystal structure was analyzed by FTIR and XRD. Korea Standard leaching Test (KSLT) is also used to evaluate the environmental safety of inorganic paste. The leached concentration of Pb and Cu were 0.44 ppm and 0.15 ppm, respectively. According to this result, heavy metals were safety immobilized and stabilized.

2013 ◽  
Vol 742 ◽  
pp. 304-309
Author(s):  
Woo Keun Lee ◽  
Ji Hyeon Lee

Geopolymer is a recently developed inorganic material that can be used to produce cement. In addition to being fire and chemical resistant, geopolymer possesses excellent mechanical properties. Geopolymeric materials are synthesized by alkaline activators such as an alumino-silicate source, which forms a gel binder phase. Toxic contaminants are also immobilized in this process. In this study, inorganic paste, different contents of MBA, and several types of activators are investigated to obtain the optimum condition. In addition, the crystalloid and crystal structure of geopolymer was analyzed by XRD and FTIR. The Korea Standard Leaching Test (KSLT) was also used to evaluate the environmental safety of inorganic paste. This study showed that the compressive strength of the WG activator is approximately twice as great as the NaOH and KOH activators. At pH 13, the WG activator also showed the best pH of the activators. In addition, the compressive strength of geopolymer concrete showed about 30 MPa in this condition. Finally, it was confirmed that all harmful heavy metals in MSWI ash were stabilized.


2014 ◽  
Vol 804 ◽  
pp. 15-18
Author(s):  
Yeong Geum Son ◽  
Woo Keun Lee

In this work, pastes were prepared from slag and MSWI bottom ash by geopolymer technique. And its physical property was evaluated with mixing ratio of sodium silicate and potassium silicate. The amounts of leaching products, such as silica, alumina and calcium ions were changed for mixing ratio of raw materials. The compressive strength was increased with the increment of leaching amount of silica, alumina and calcium ions.


2003 ◽  
Vol 23 (9) ◽  
pp. 851-857 ◽  
Author(s):  
Young-Sook Shim ◽  
Young-Keun Kim ◽  
Sung-Ho Kong ◽  
Seung-Whee Rhee ◽  
Woo-Keun Lee

2021 ◽  
Vol 47 (2) ◽  
pp. 216-224
Author(s):  
Noorafizah Binti Murshid ◽  
Nor Amani Filzah Binti Mohd Kamil ◽  
Aeslina Abdul Kadir ◽  
Noor Faiza Binti Roslee ◽  
Abdul Rahim Jalil

In Malaysia, the current practise in treatment of petroleum sludge (PS) is by using incineration and the ash produce required further treatment for safely disposal into landfill. This process require high cost and treatment of raw sludge by using solidification/stabilization method was introduce. In this study, ordinary Portland cement was used as binder. This study focuses on physical properties (compressive strength, density test and water absorption) of S/S matrices and leaching behaviour (SPLP). Results shows adds up to of 30% PS gives results on strength which comply with minimum landfill dispose limit. Correlation between strength and density in regression coefficient of 80.99% and correlation between strength and water absorption shows strong regression of 93.12%. Leaching behaviours on 28 th day of curing showed the similar trend as on 7th day of curing. All heavy metals concentration in leaching test were below the USEPA standard except for Nickel and Chromium. Even though these two metals were exceeded the standard, Portland cement was capable to encapsulate Ni and Cr in mixture and reduce the concentration of 87% and 69% (PS 40%), respectively, compare to concentration in raw sludge. As, conclusion S/S method can be an alternative disposal method for raw sludge.


Author(s):  
Jurgita Seniunaitė ◽  
Saulius Vasarevičius

Municipal solid wastes incineration (MSWI) is an important part of the waste management systems in many European countries. Incineration process generates two main by-products: fly ash (FA) and bottom ash (BA). Bottom ash is composed of a variety of oxides, heavy metals and salts. Landfilling of untreated (fresh) BA can cause soil, surface and ground water contamination problems, because atmospheric precipitation in BA formed leachate, which contains of various materials. In this study investigates the influence of natural weathering to heavy metals leaching from BA. Leaching tests of bottom ash were carried out in 6 months, leachate samples were taken at 12 times (every 2 weeks). Heavy metals (Pb, Cu) concentrations were determined by atomic adsorption of spectral analysis method. The research shown, that the highest lead and copper concentration was determinated in 2 weeks weathered bottom ash leachate, respectively was 0.613 mg l–1 and 0.068 mg l–1. In both cases the concentration of Pb (0.010–0.052 mg l–1) and Cu (0.010-0.018 mg l–1) became almost stable after 12 weeks. Can be concluded, that short-term (3 months) natural weathering is sufficient time for stabilise MSWI bottom ash and heavy metals (Cu and Pb) leaching. After 18–24 weeks heavy metals concentrations stabilized and remained almost constant.


Fuel ◽  
2010 ◽  
Vol 89 (3) ◽  
pp. 616-622 ◽  
Author(s):  
Jun Yao ◽  
Wen-Bing Li ◽  
Qing-Na Kong ◽  
Yu-Yong Wu ◽  
Ruo He ◽  
...  

2019 ◽  
Vol 9 (23) ◽  
pp. 5091 ◽  
Author(s):  
Yongzhen Cheng ◽  
Yun Dong ◽  
Jiakang Diao ◽  
Guoying Zhang ◽  
Chao Chen ◽  
...  

This research provides a strategy for partially replacing cement with municipal solid waste incineration (MSWI) bottom ash (BA) to improve the performance of concrete against sulphate attack. Mortar strength tests were performed firstly to evaluate the hydration activity of the ground BA. Concrete specimens were cured in standard conditions and immersed in a solution that contained 10% sodium sulfate. Then, the compressive strength of these specimens was measured to investigate the mechanical properties and durability of the concrete. Next, the capillary porosity of the concrete was determined from the volume fractions of water lost in specimens. Finally, the transport of the sulphate solution in concrete was analyzed using capillary rise, crystallization rate, and solution absorption tests. The results indicated that BA had a certain hydration activity. The equivalent replacement of cement by BA decreased the compressive strength of the specimens but increased the durability of the concrete. There was an excellent correlation between capillary rise height, sulfate solution absorption amount, crystallization rate, and coarse capillary porosity. The addition of BA can decrease the coarse capillary porosity and further slow the capillary transport and crystallization of sulfate solution in concrete. Overall, the replacement of cement with BA can improve the durability of concrete and actualize the utilization of MSWI residues as a resource.


2020 ◽  
Vol 12 (22) ◽  
pp. 9461
Author(s):  
Enrico Destefanis ◽  
Caterina Caviglia ◽  
Davide Bernasconi ◽  
Erica Bicchi ◽  
Renato Boero ◽  
...  

Treatments to reduce the leaching of contaminants (chloride, sulfate, heavy metals) into the environment from bottom ash (BA) are investigated, as a function of the ash’s particle size (s). The aim is to make BA suitable for reuse as secondary raw material, in accordance with the legal requirements. Such treatments must be economically feasible and, possibly, have to use by-products of the plant (in this case, steam in excess from the turbine). For the sake of completeness and comparison, carbonation is performed on those BA particle size classes that are not positively responsive to steam washing. BA is partitioned into four different particle size classes (s ≥ 4.75, 4.75 > s ≥ 2, 2 > s ≥ 1 and s < 1 mm, corresponding to 36, 24, 13 and 27 wt%, respectively). In the case of s ≥ 2 mm (60 wt%), steam washing is effective in reducing to under the legal limits the leaching of chlorides, sulfate and heavy metals (Zn, Cu, Cd, Pb). It has been observed that steam washing causes both removal and dissolution of thin dust adherent to the BA’s surface. BA with 2 > s ≥ 1 (~13 wt% of total BA) requires a combination of steam washing and carbonation to achieve a leaching below the legal limits. The finest BA fraction, s < 1 mm (~27 wt% of total BA), is treated by carbonation, which reduces heavy metals leaching by 85%, but it fails to sufficiently curb chlorides and sulfates.


Sign in / Sign up

Export Citation Format

Share Document