scholarly journals Recycling of waste incineration bottom ash in the production of interlocking concrete bricks

Author(s):  
Nguyen Huu May ◽  
Huynh Trong Phuoc ◽  
Le Thanh Phieu ◽  
Ngo Van Anh ◽  
Chau Minh Khai ◽  
...  

This study presents an experimental investigation on the recycling of waste incineration bottom ash (IBA) as a fine aggregate in the production of interlocking concrete bricks (ICB). Before being used, the concentration of heavy metal in IBA was determined to confirm it is a non-toxic material. In this study, the IBA was used to replace crushed sand (CSA) in the brick mixtures at different replacement levels of 0%, 25%, 50%, 75%, and 100% (by volume). The ICB samples were checked for dimensions, visible defects, compressive strength, bending strength, water absorption, and surface abrasion in accordance with the related Vietnamese standards. The test results demonstrated that the IBA used in this study was a non-toxic material, which can be widely used for construction activities. All of the ICB samples prepared for this study exhibited a nice shape with consistent dimensions and without any visible defects. The incorporation of IBA in the brick mixtures affected engineering properties of the ICB samples such as a reduction in the compressive strength and bending strength and an increment in water absorption and surface abrasion of the brick samples. As a result, the compressive strength, bending strength, water absorption, and surface abrasion values of ICB samples at 28 days were in the ranges of 20.6 – 34.9 MPa, 3.95 – 6.62 MPa, 3.8 – 7.2%, and 0.132 – 0.187 g/cm2, respectively. Therefore, either partial or full replacement of CSA by IBA, the ICB with grades of M200 – M300 could be produced with satisfying the TCVN 6476:1999 standard in terms of dimensions, visible defects, compressive strength, water absorption, and surface abrasion. These results demonstrated the high applicability of the local IBA in the production of the ICB for various construction application purposes. Keywords: interlocking concrete brick; waste incineration bottom ash; visible defect; compressive strength; bending strength; water absorption; surface abrasion.

2014 ◽  
Vol 660 ◽  
pp. 145-151 ◽  
Author(s):  
Norul Ernida Zainal Abidin ◽  
Mohd Haziman Wan Ibrahim ◽  
Norwati Jamaluddin ◽  
Kartini Kamaruddin ◽  
Ahmad Farhan Hamzah

Bottom ash is a solid residue produced through combustion process in a coal-fired power plant. It has been catogarized as a waste and usually disposed in the utility disposed site. With higher demand on the power energy, more coal-power plant are constructed and abundance of bottom ash are produced. Recently, the utilization of bottom ash in the construction industry has gained the interest of researches. Since it has similiar particle size distribution as normal sand, many attempt has been made in studying it potential use in mortar and concrete. In complementary to that, this paper presents the effect of bottom ash on fresh and hardened properties of self-compacting concrete (SCC). Bottom ash is used as fine aggregate replacing sand with replacement ratio range from 0% to 30% by volume. The effects of bottom ash on the SCC were investigated by comparing the test result of SCC mixed bottom ash with control specimens (0% of bottom ash). The test result on fresh properties of the concrete mixture revealed that, as the replacement level of bottom ash increased, the slump flow, L-box passing ratio and segregation resistance ratio (SR) decreased. Nevertheless, the slump flow time (T500) result increased with the increased of bottom ash content. The results show that the porosity and the irregular shape of the bottom ash particle has great influence on workability and viscosity of the fresh concete. The compressive strength and water absorption test are carried out on the sample at curing time of 7 and 28days. In terms of strength, the use of bottom ash in the production of SCC has increased the compressive strength of the concrete up to 15% replacement level. The increase in strength show the presence of the pozzolanic reactivity in a concrete with bottom ash particle. The water absorption rate was observed to be lower with a sample which having 10% and 15% replacement level.


Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2528
Author(s):  
Puput Risdanareni ◽  
Yury Villagran ◽  
Katrin Schollbach ◽  
Jianyun Wang ◽  
Nele De Belie

Production of artificial lightweight aggregate (LWA) from industrial by-products or abundant volcanic mud is a promising solution to prevent damaging the environment due to the mining of natural aggregate. However, improvements are still needed in order to control the high water absorption of LWA and strength reduction in resulting concrete or mortar. Hence in this research, fly ash, municipal solid waste incineration bottom ash (MSWI BA), and Sidoarjo volcanic mud (Lusi) were employed as a precursor and activated using NaOH 6 M and Na2SiO3 in producing LWA. The influence of the type of the precursors on the physical properties of resulting LWA was investigated. The effect of replacing natural fine aggregate with the resulting LWA on the compressive strength and volume density of mortar was also determined. Finer particles, a high amount of amorphous phase, and low loss on ignition (LOI) of the raw material improved the properties of resulting LWA. Mortar compressive strength was decreased by 6% when replacing 16% by volume of natural fine aggregate with fly ash based LWA. Compared to the expanded clay LWA, the properties of alternative LWAs in this study were slightly, but not significantly, inferior. Alternative LWA becomes attractive when considering that expanded clay LWA requires more energy during the sintering process.


2011 ◽  
Vol 695 ◽  
pp. 287-290
Author(s):  
J. M. Zhao ◽  
Z. X. Yang ◽  
Kyu Hong Hwang ◽  
M. C. Kim

To replace bottom ash for natural sand completely, the mix proportions of bottom ash in concrete was adjusted according to tab density and replacement ratio of Metakaolin/Cement were established. And then testing for slump, setting time, and compressive strength was conducted. According to test results, the compressive strength of concrete using the bottom ash was lower than that of concrete using natural sand (BAO concrete). But by adjusting the amount of bottom ash in concrete according tab density so that the fine aggregate proportions change 44% to 38%, the compressive strength of concrete using the bottom ash could even be higher than BAO concrete. And the chloric content of concrete using the bottom ash increased as the replacement ratio of bottom ash increased, but it is satisfied with the chloric content of fresh concrete 0.30 kg/m2 below (concrete standard specification regulation value).


2011 ◽  
Vol 488-489 ◽  
pp. 278-281
Author(s):  
J. M. Zhao ◽  
Z. X. Yang ◽  
Kyu Hong Hwang ◽  
J.K. Lee ◽  
M. C. Kim ◽  
...  

To replace bottom ash for natural sand completely, the mix proportions of bottom ash in concrete was adjusted according to tab density and replacement ratio of polymeric resin/Potland cement(PC) were established. And then testing for slump, setting time, and compressive strength was conducted. According to test results, the compressive strength of concrete using the bottom ash was lower than that of concrete using natural sand (BA0 concrete). But by adjusting the amount of bottom ash in concrete according tab density so that the fine aggregate proportions change 44% to 38%, the compressive strength of concrete using the bottom ash could even be higher than BA0 concrete. And as the polymeric resin content of bottom ash concrete increased, strength would be increased drastically, but proper dispersant should be cooperated with polymeric resin cement with fine bottom ash powders.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Patchara Onprom ◽  
Krit Chaimoon ◽  
Raungrut Cheerarot

This research focuses on evaluating the feasibility of utilizing bottom ash from coal burning power plants as a fine aggregate in cellular concrete with various foam contents. Flows of all mixtures were controlled within 45 ± 5% and used foam content at 30%, 40%, 50%, 60%, and 70% by volume of mixture. Bottom ash from Mae Moh power plant in Thailand was used to replace river sand at the rates of 0%, 25%, 50%, 75%, and 100% by volume of sand. Compressive strength, water absorption, and density of cellular concretes were determined at the ages of 7, 14, and 28 days. Nonlinear regression technique was developed to construct the mathematical models for predicting the compressive strength, water absorption, and density of cellular concrete. The results revealed that the density of cellular concrete decreased while the water absorption increased with an increase in replacement level of bottom ash. From the experimental results, it can be concluded that bottom ash can be used as fine aggregate in the cellular concrete. In addition, the nonlinear regression models give very high degree of accuracy (R2>0.99).


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3863
Author(s):  
Deng-Fong Lin ◽  
Wei-Jhu Wang ◽  
Chia-Wen Chen ◽  
Kuo-Liang Lin

Municipal incinerator bottom ash (MIBA) and sewage sludge ash (SSA) are secondary wastes produced from municipal incinerators. Landfills, disposal at sea, and agricultural use have been the major outlets for these secondary wastes. As global emphasis on sustainability arises, many have called for an increasing reuse of waste materials as valuable resources. In this study, MIBA and SSA were mixed with clay for ceramic tile manufacturing in this study. Raw materials firstly went through TCLP (Toxicity Characteristic Leaching Procedure) to ensure their feasibility for reuse. From scanning electron microscopy (SEM), clay’s smooth surface was contrasted with the porous surface of MIBA and SSA, which led to a higher water requirement for the mixing. Specimens with five MIBA mix percentages of 0%, 5%, 10%, 15%, and 20% (wt) and three SSA mix percentages of 0%, 10%, and 20% (wt) were made to compare how the two waste materials affected the quality of the final product and to what extent. Shrinkage tests showed that MIBA and SSA contributed oppositely to tile shrinkage, as more MIBA reduced tile shrinkage, while more SSA encouraged tile shrinkage. However, as the kiln temperature reached 1150 °C, the SiO2-rich SSA adversely reduced the shrinkage due to the glass phase that formed to expand the tile instead. Both MIBA and SSA increased water tile absorption and reduced its bending strength and wear resistance. Increasing the kiln temperature could effectively improve the water absorption, bending strength, and wear resistance of high MIBA and SSA mixes, as SEM showed a more compact structure at higher temperatures. However, when the temperature reached 1100 °C, more pores appeared and seemingly exhausted the benefit brought by the higher temperature. Complex interactions between kiln temperature and MIBA/SSA mix percentage bring unpredictable performance of tile shrinkage, bending strength, and water absorption, which makes it very challenging to create a sample meeting all the specification requirements. We conclude that a mix with up to 20% of SSA and 5% of MIBA could result in quality tiles meeting the requirements for interior or exterior flooring applications when the kiln temperature is carefully controlled.


2018 ◽  
Vol 53 ◽  
pp. 04021
Author(s):  
SHAO Yong ◽  
LIU Xiao-li ◽  
ZHU Jin-jun

Industrial alkali slag is the discharge waste in the process of alkali production. About one million tons of alkali slag is discharged in China in one year. It is a burden on the environment, whether it is directly stacked or discharged into the sea. If we can realize the use of resources, it is a multi-pronged move, so alkali slag is used to improve solidified marine soft soil in this paper. The test results show that the alkali residue can effectively improve the engineering properties of marine soft soil. Among them, the unconfined compressive strength and compressive modulus are increased by about 10 times, and the void ratio and plasticity index can all reach the level of general clay. It shows that alkali slag has the potential to improve marine soft soil and can be popularized in engineering.


Buildings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 179
Author(s):  
Jad Bawab ◽  
Jamal Khatib ◽  
Said Kenai ◽  
Mohammed Sonebi

Waste management is a vital environmental issue in the world today. Municipal solid wastes (MSWs) are discarded in huge quantities on a daily basis and need to be well controlled. Incineration is a common method for reducing the volume of these wastes, yet it produces ashes that require further assessment. Municipal solid waste incineration bottom ash (MSWI-BA) is the bulk byproduct of the incineration process and has the potential to be used in the construction sector. This paper offers a review of the use of MSWI-BA as aggregates in cementitious materials. With the growing demand of aggregates in cementitious materials, MSWI-BA is considered for use as a partial or full alternative. Although the physical and chemical properties of MSWI-BA are different than those of natural aggregates (NA) in terms of water absorption, density, and fineness, they can be treated by various methods to ensure suitable quality for construction purposes. These treatment methods are classified into thermal treatment, solidification and stabilization, and separation processes, where this review focuses on the techniques that reduce deficiencies limiting the use of MSWI-BA as aggregates in different ways. When replacing NA in cementitious materials, MSWI-BA causes a decrease in workability, density, and strength. Moreover, they cause an increase in water absorption, air porosity, and drying shrinkage. In general, the practicality of using MSWI-BA in cementitious materials is mainly influenced by its treatment method and the replacement level, and it is concluded that further research, especially on durability, is required before MSWI-BA can be efficiently used in the production of sustainable cementitious materials.


Author(s):  
Harish R ◽  
Ramesh S ◽  
Tharani A ◽  
Mageshkumar P

This paper presents the results of an experimental investigation of the compressive strength of concrete cubes containing termite mound soil. The specimens were cast using M20 grade of concrete. Two mix ratios for replacement of sand and cement are of 1:1.7:2.7 and 1:1.5:2.5 (cement: sand: aggregate) with water- cement ratio of 0.45 and varying combination of termite mound soil in equal amount ranging from 30% and 40% replacing fine aggregate (sand) and cement from 10%,15%,20% were used. A total of 27 cubes, 18 cylinders and 6 beams were cast by replacing fine aggregate, specimens were cured in water for 7,14 and 28 days. The test results showed that the compressive strength of the concrete cubes increases with age and decreases with increasing percentage replacement of cement and increases with increasing the replacement of sand with termite mound soil cured in water. The study concluded that termite mound cement concrete is adequate to use for construction purposes in natural environment.


Sign in / Sign up

Export Citation Format

Share Document