scholarly journals Synthesis, Characterization and Catalytic Activity of UiO-66-NH2 in the Esterification of Levulinic Acid

Applied Nano ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 344-358
Author(s):  
Daiana A. Bravo Fuchineco ◽  
Angélica C. Heredia ◽  
Sandra M. Mendoza ◽  
Enrique Rodríguez-Castellón ◽  
Mónica E. Crivello

The massive use of petroleum and its possible exhaustion are driving the current research trend to study alternative raw materials from biomass for organic reactions. In this context, the present article presents a study of the catalytic esterification of levulinic acid, a platform molecule, with ethanol. Metal-organic framework (MOF) type compounds UiO-66-NH2 have been synthesized. Zirconium was incorporated, using zirconium chloride as a metal precursor, together with 2-aminoterephthalic acid as an organic binding agent. An alternative route of synthesis was proposed using more favorable conditions from an economic and environmental point of view, replacing dimethylformamide by 50 and 75% acetone as substitute solvent. The physicochemical properties of the materials were evaluated by X-ray diffraction (XRD), Infrared Spectrometry with Fourier Transform (FTIR), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), microwave plasma atomic emission spectroscopy (MP-AES) and N2 adsorption to understand their morphology, crystalline, chemical and pore structure. The progress of the reaction was followed by gas chromatography and mass spectroscopy. The catalytic activity result of MOF25% in autoclave reactor, showed 100% of selectivity to ethyl levulinate and a turnover number (TON) of 66.18 moles of product/moles of Zr. This good catalytic performance obtained by partial solvent replacement in the synthetic material provides a more economical and eco-friendly process for ethyl levulinate generation.

Nanomaterials ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1432 ◽  
Author(s):  
Weiwei Xu ◽  
Mengyue Dong ◽  
Lanbo Di ◽  
Xiuling Zhang

With increasing applications of metal-organic frameworks (MOFs) in the field of gas separation and catalysis, the preparation and performance research of encapsulating metal nanoparticles (NPs) into MOFs (M@MOF) have attracted extensive attention recently. Herein, an Ru@UiO-66 catalyst is prepared by a one-step method. Ru NPs are encapsulated in situ in the UiO-66 skeleton structure during the synthesis of UiO-66 metal-organic framework via a solvothermal method, and its catalytic activity for CO2 methanation with the synergy of cold plasma is studied. The crystallinity and structural integrity of UiO-66 is maintained after encapsulating Ru NPs according to the X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). As illustrated by X-ray photoelectron spectroscopy (XPS), high resolution transmission electron microscopy (HRTEM), and mapping analysis, the Ru species of the hydration ruthenium trichloride precursor are reduced to metallic Ru NPs without additional reducing processes during the synthesis of Ru@UiO-66, and the Ru NPs are uniformly distributed inside the Ru@UiO-66. Thermogravimetric analysis (TGA) and N2 sorption analysis show that the specific surface area and thermal stability of Ru@UiO-66 decrease slightly compared with that of UiO-66 and was ascribed to the encapsulation of Ru NPs in the UiO-66 skeleton. The results of plasma-assisted catalytic CO2 methanation indicate that Ru@UiO-66 exhibits excellent catalytic activity. CO2 conversion and CH4 selectivity over Ru@UiO-66 reached 72.2% and 95.4% under 13.0 W of discharge power and a 30 mL·min−1 gas flow rate ( V H 2 : V C O 2 = 4 : 1 ), respectively. Both values are significantly higher than pure UiO-66 with plasma and Ru/Al2O3 with plasma. The enhanced performance of Ru@UiO-66 is attributed to its unique framework structure and excellent dispersion of Ru NPs.


1989 ◽  
Vol 43 (7) ◽  
pp. 1153-1158 ◽  
Author(s):  
Yaoming Xie ◽  
Peter M. A. Sherwood

X-ray photoelectron spectroscopy has been used to monitor the surface chemical changes occurring on type II carbon fibers exposed to air, oxygen, and nitrogen plasmas. In all cases the plasmas caused changes in surface functionality, in terms of both C-O and C-N functionality. Prolonged exposure to the plasmas caused loss of surface functionality for air and oxygen plasmas, and extended treatment caused fiber damage. Plasma treatment of fibers promises to be an effective method of fiber treatment.


2011 ◽  
Vol 268-270 ◽  
pp. 356-359 ◽  
Author(s):  
Wen Song Lin ◽  
C. H. Wen ◽  
Liang He

Mn, Fe doped ZnO powders (Zn0.95-xMnxFe0.05O2, x≤0.05) were synthesized by an ameliorated sol-gel method, using Zn(CH3COO)2, Mn(CH3COO)2and FeCl2as the raw materials, with the addition of vitamin C as a kind of chemical reducer. The resulting powder was subsequently compacted under pressure of 10 MPa at the temperature of 873K in vacuum. The crystal structure and magnetic properties of Zn0.95-xMnxFe0.05O2powder and bulk samples have been investigated by X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). X-ray photoelectron spectroscopy (XPS) was used to study chemical valence of manganese, iron and zinc in the samples. The x-ray diffraction (XRD) results showed that Zn0.95-xMnxFe0.05O (x≤0.05) samples were single phase with the ZnO-like wurtzite structure. No secondary phase was found in the XRD spectrum. X-ray photoelectron spectroscopy (XPS) showed that Fe and Mn existed in Zn0.95-xMnxFe0.05O2samples in Fe2+and Mn2+states. The results of VSM experiment proved the room temperature ferromagnetic properties (RTFP) of Mn, Fe co-doped ZnO samples.


2009 ◽  
Vol 24 (6) ◽  
pp. 2021-2028 ◽  
Author(s):  
R. Milani ◽  
R.P. Cardoso ◽  
T. Belmonte ◽  
C.A. Figueroa ◽  
C.A. Perottoni ◽  
...  

High temperature plasma nitriding of yttria-partially-stabilized zirconia in atmospheric pressure microwave plasma was investigated. The morphological, mechanical, and physicochemical characteristics of the resulting nitrided layer were characterized by different methods, such as optical and scanning electron microscopy, microindentation, x-ray diffraction, narrow resonant nuclear reaction profiling, secondary neutral mass spectrometry, and x-ray photoelectron spectroscopy, aiming at investigating the applicability of this highly efficient process for nitriding of ceramics. The structure of the plasma nitrided layer was found to be complex, composed of tetragonal and cubic zirconia, as well as zirconium nitride and oxynitride. The growth rate of the nitrided layer, 4 µm/min, is much higher than that obtained by any other previous nitriding process, whereas a typical 50% increase in Vickers hardness over that of yttria-partially-stabilized zirconia was observed.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
José María Rivera ◽  
Susana Rincón ◽  
Cherif Ben Youssef ◽  
Alejandro Zepeda

Mesoporous metal-organic framework-5 (MOF-5), with the composition Zn4O(BDC)3, showed a high capacity for the adsorptive removal of Pb(II) from 100% aqueous media. After the adsorption process, changes in both morphology and composition were detected using a scanning electron microscope (SEM) equipped with an energy dispersive X-ray (EDX) system, Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) analysis. The experimental evidence showed that Zn(II) liberation from MOF-5 structure was provoked by the water effect demonstrating that Pb(II) removal is not due to ionic exchange with Zn. A kinetic study showed that Pb(II) removal was carried out in 30 min with a behavior of pseudo-second-order kinetic model. The experimental data on Pb(II) adsorption were adequately fit by both the Langmuir and BET isotherm models with maximum adsorption capacities of 658.5 and 412.7 mg/g, respectively, at pH 5 and 45°C. The results of this work demonstrate that the use of MOF-5 has great potential for applications in environmental protection, especially regarding the removal of the lead present in industrial wastewaters and tap waters.


2011 ◽  
Vol 89 (7) ◽  
pp. 845-853 ◽  
Author(s):  
Sadok Letaief ◽  
Wendy Pell ◽  
Christian Detellier

The clay mineral kaolinite was used as support of gold nanoparticles for heterogeneous catalysis of oxidation reactions, particularly of carbon monoxide oxidation. The application of clay minerals in the preparation of new functional materials provides an alternative approach for the use of these abundant raw materials. To improve the physicochemical properties of kaolinite, as well as to ensure a strong immobilization of the adsorbed species, kaolinite was functionalized by grafting 2-amino-2-methyl-1,3-propanediol on the internal and external surfaces of the octahedral sheets by reaction with the aluminol groups. Gold nanoparticles were then deposited on the external surfaces of the fine particles of the functionalized kaolinite. The resulting gold kaolinite nanohybrid material was characterized by various physicochemical techniques. X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and energy-dispersive X-ray spectrometry confirmed that gold was effectively reduced to the metallic state during adsorption onto the external surfaces of the modified kaolinite. The gold nanoparticles have a narrow size distribution: more than 88% are less than 4 nm in diameter. Gold nanoparticles deposited on kaolinite catalyze the electro-oxidation of carbon monoxide in alkaline solution at room temperature.


2016 ◽  
Vol 73 (11) ◽  
pp. 2747-2753 ◽  
Author(s):  
Wusong Kong ◽  
Hongxia Qu ◽  
Peng Chen ◽  
Weihua Ma ◽  
Huifang Xie

In this study, Cu2O-CuO/ZSM-5 nanocomposite was synthesized by the impregnation method, and its catalytic performance for the destruction of AO7 in aqueous solutions was investigated. The morphology, structure and surface element valence state of Cu2O-CuO/ZSM-5 were characterized by transmission electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The operating conditions on the degradation of AO7 by Cu2O-CuO/ZSM-5, such as initial pH values, concentration of AO7 and catalyst dosage were investigated and optimized. The results showed that the sample had good catalytic activity for destruction of AO7 in the absence of a sacrificial agent (e.g. H2O2): it could degrade 91% AO7 in 140 min at 25 °C and was not restricted by the initial pH of the AO7 aqueous solutions. Cu2O-CuO/ZSM-5 exhibited stable catalytic activity with little loss after three successive runs. The total organic carbon and chemical oxygen demand removal efficiencies increased rapidly to 69.36% and 67.3% after 120 min of treatment by Cu2O-CuO/ZSM-5, respectively.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Pham Dinh Du ◽  
Huynh Thi Minh Thanh ◽  
Thuy Chau To ◽  
Ho Sy Thang ◽  
Mai Xuan Tinh ◽  
...  

In the present paper, the synthesis of metal-organic framework MIL-101 and its application in the photocatalytic degradation of Remazol Black B (RBB) dye have been demonstrated. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption/desorption isotherms at 77 K. It was found that MIL-101 synthesized under optimal conditions exhibited high crystallinity and specific surface area (3360 m2·g-1). The obtained MIL-101 possessed high stability in water for 14 days and several solvents (benzene, ethanol, and water at boiling temperature). Its catalytic activities were evaluated by measuring the degradation of RBB in an aqueous solution under UV radiation. The findings show that MIL-101 was a heterogeneous photocatalyst in the degradation reaction of RBB. The mechanism of photocatalysis was considered to be achieved by the electron transfer from photoexcited organic ligands to metallic clusters in MIL-101. The kinetics of photocatalytic degradation reaction were analyzed by using the initial rate method and Langmuir-Hinshelwood model. The MIL-101 photocatalyst exhibited excellent catalytic recyclability and stability and can be a potential catalyst for the treatment of organic pollutants in aqueous solutions.


Sign in / Sign up

Export Citation Format

Share Document