scholarly journals Parameter Modulation of Madden-Julian Oscillation Behaviors in BCC_CSM1.2: The Key Role of Moisture-Shallow Convection Feedback

Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 241 ◽  
Author(s):  
Kai Huang ◽  
Hong-Li Ren ◽  
Xiangwen Liu ◽  
Pengfei Ren ◽  
Yuntao Wei ◽  
...  

To reveal key parameter-related physical mechanisms in simulating Madden-Julian Oscillation (MJO), seven physical parameters in the convection and cloud parameterization schemes of Beijing Climate Center Climate System Model (BCC_CSM1.2) are perturbed with Latin hypercube sampling method. A new strategy is proposed to select runs with good and poor MJO simulations among 85 generated ones. Outputs and parameter values from good and poor simulations are composited separately for comparison. Among the seven chosen parameters, a decreased value of precipitation efficiency for shallow convection, higher values of relative humidity threshold for low stable clouds and evaporation efficiency for deep convective precipitation are crucial to simulate a better MJO. Changes of the three parameters act together to suppress heavy precipitation and increase the frequency of light rainfall over the Indo-Pacific region, supplying more moisture in low and middle troposphere. As a result of a wetter lower troposphere ahead of the MJO main convection, the low-level moisture preconditioning along with the leading shallow convection tends to be enhanced, favorable for MJO’s further development and eastward propagation. The MJO’s further propagation across the Maritime Continent (MC) in good simulations is accompanied with more land precipitation dominated by shallow convection. Therefore, the above-mentioned three parameters are found to be crucial parameters out of the seven ones for MJO simulation, providing an inspiration for better MJO simulation and prediction with this model. This work is valuable as it highlights the key role of moisture-shallow convection feedback in the MJO dynamics.

2005 ◽  
Vol 18 (19) ◽  
pp. 4046-4064 ◽  
Author(s):  
Guang J. Zhang ◽  
Mingquan Mu

Abstract This study presents the simulation of the Madden–Julian oscillation (MJO) in the NCAR CCM3 using a modified Zhang–McFarlane convection parameterization scheme. It is shown that, with the modified scheme, the intraseasonal (20–80 day) variability in precipitation, zonal wind, and outgoing longwave radiation (OLR) is enhanced substantially compared to the standard CCM3 simulation. Using a composite technique based on the empirical orthogonal function (EOF) analysis, the paper demonstrates that the simulated MJOs are in better agreement with the observations than the standard model in many important aspects. The amplitudes of the MJOs in 850-mb zonal wind, precipitation, and OLR are comparable to those of the observations, and the MJOs show clearly eastward propagation from the Indian Ocean to the Pacific. In contrast, the simulated MJOs in the standard CCM3 simulation are weak and have a tendency to propagate westward in the Indian Ocean. Nevertheless, there remain several deficiencies that are yet to be addressed. The time period of the MJOs is shorter, about 30 days, compared to the observed time period of 40 days. The spatial scale of the precipitation signal is smaller than observed. Examination of convective heating from both deep and shallow convection and its relationship with moisture anomalies indicates that near the mature phase of the MJO, regions of shallow convection developing ahead of the deep convection coincide with regions of positive moisture anomalies in the lower troposphere. This is consistent with the recent observations and theoretical development that shallow convection helps to precondition the atmosphere for MJO by moistening the lower troposphere. Sensitivity tests are performed on the individual changes in the modified convection scheme. They show that both change of closure and use of a relative humidity threshold for the convection trigger play important roles in improving the MJO simulation. Use of the new closure leads to the eastward propagation of the MJO and increases the intensity of the MJO signal in the wind field, while imposing a relative humidity threshold enhances the MJO variability in precipitation.


2007 ◽  
Vol 64 (2) ◽  
pp. 381-400 ◽  
Author(s):  
Boualem Khouider ◽  
Andrew J. Majda

Abstract Observations in the Tropics point to the important role of three cloud types, congestus, stratiform, and deep convective clouds, besides ubiquitous shallow boundary layer clouds for both the climatology and large-scale organized anomalies such as convectively coupled Kelvin waves, two-day waves, and the Madden–Julian oscillation. Recently, the authors have developed a systematic model convective parameterization highlighting the dynamic role of the three cloud types through two baroclinic modes of vertical structure: a deep convective heating mode and a second mode with lower troposphere heating and cooling corresponding respectively to congestus and stratiform clouds. The model includes both a systematic moisture equation where the lower troposphere moisture increases through detrainment of shallow cumulus clouds, evaporation of stratiform rain, and moisture convergence and decreases through deep convective precipitation and also a nonlinear switch that favors either deep or congestus convection depending on whether the lower middle troposphere is moist or dry. Here these model convective parameterizations are applied to a 40 000-km periodic equatorial ring without rotation, with a background sea surface temperature (SST) gradient and realistic radiative cooling mimicking a tropical warm pool. Both the emerging “Walker cell” climatology and the convectively coupled wave fluctuations are analyzed here while various parameters in the model are varied. The model exhibits weak congestus moisture coupled waves outside the warm pool in a turbulent bath that intermittently amplify in the warm pool generating convectively coupled moist gravity wave trains propagating at speeds ranging from 15 to 20 m s−1 over the warm pool, while retaining a classical Walker cell in the mean climatology. The envelope of the deep convective events in these convectively coupled wave trains often exhibits large-scale organization with a slower propagation speed of 3–5 m s−1 over the warm pool and adjacent region. Occasional much rarer intermittent deep convection also occurs outside the warm pool. The realistic parameter regimes in the multicloud model are identified as those with linearized growth rates for large scale instabilities roughly in the range of 0.5 K day−1.


2017 ◽  
Vol 30 (18) ◽  
pp. 7423-7439 ◽  
Author(s):  
Guyu Cao ◽  
Guang J. Zhang

Abstract Observational studies suggest that the vertical structure of diabatic heating is important to MJO development. In particular, the lack of a top-heavy heating profile was believed to be responsible for poor MJO simulations in global climate models. In this work, the role of the vertical heating profile in MJO simulation is investigated by modifying the convective heating profile to different shapes, from top-heavy heating to bottom cooling, to mimic mesoscale heating in the NCAR Community Atmosphere Model, version 5.3 (CAM5.3). Results suggest that incorporating a mesoscale stratiform heating structure can significantly improve the MJO simulation. By artificially adding stratiform-like heating and cooling in the experiments, many observed features of MJO are reproduced, including clear eastward propagation, a westward-tilted vertical structure of MJO-scale anomalies of dynamic and thermodynamic fields, and strong 20–80-day spectral power. Further analysis shows an abundance of shallow convection ahead of MJO deep convection, confirming the role of shallow convection in preconditioning the atmosphere by moistening the lower troposphere ahead of deep convection during the MJO life cycle. Additional experiments show that lower-level cooling contributes more to improving the MJO simulation. All these features are lacking in the control simulation, suggesting that the mesoscale stratiform heating, especially its lower-level cooling component, is important to MJO simulation.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Nathan Hosannah ◽  
Hamed Parsiani ◽  
Jorge E. González

Saharan dust (SD) heavily impacts convective precipitation in the Caribbean. To better understand the role of SD in precipitation development during the midsummer drought (MSD), an observational campaign, centered at the city of Mayagüez, Puerto Rico (18.21 N, 67.13 W), between 3 June and 15 July 2014, was conducted in order to select a range of atmospheric conditions to be simulated using the Regional Atmospheric Modeling System (RAMS) cloud resolving model under “no SD” and “SD” conditions. The events included one dry day with moderate-heavy SD, one localized moderate rainfall event with moderate SD, one island-wide light precipitation event with heavy SD, and one island-wide heavy precipitation event with light-moderate SD. Model results show that (1) precipitation results are improved when compared with observation with the presence of SD, (2) precipitation, cloud fraction, dew point temperatures, and humidity are significantly reduced under SD conditions, (3) precipitation can occur when SD is removed for a dry day, (4) there is evidence of rain being delayed due to the presence of SD without rainfall intensity or accumulation increases, (5) liquid mixing ratio increases of up to 1.4 g kg−1occur in the absence of SD, and (6) vertical wind increases of up to 0.8 m s−1occur in the absence of SD.


2006 ◽  
Vol 63 (4) ◽  
pp. 1308-1323 ◽  
Author(s):  
Boualem Khouider ◽  
Andrew J. Majda

Abstract Recent observational analysis reveals the central role of three multicloud types, congestus, stratiform, and deep convective cumulus clouds, in the dynamics of large-scale convectively coupled Kelvin waves, westward-propagating two-day waves, and the Madden–Julian oscillation. A systematic model convective parameterization highlighting the dynamic role of the three cloud types is developed here through two baroclinic modes of vertical structure: a deep convective heating mode and a second mode with low-level heating and cooling corresponding respectively to congestus and stratiform clouds. A systematic moisture equation is developed where the lower troposphere moisture increases through detrainment of shallow cumulus clouds, evaporation of stratiform rain, and moisture convergence and decreases through deep convective precipitation. A nonlinear switch is developed that favors either deep or congestus convection depending on the relative dryness of the troposphere; in particular, a dry troposphere with large convective available potential energy (CAPE) has no deep convection and only congestus clouds. The properties of the multicloud model parameterization are tested by linearized analysis in a two-dimensional setup with no rotation with constant sea surface temperature. In particular, the present study reveals new mechanisms for the large-scale instability of moist gravity waves with features resembling observed convectively coupled Kelvin waves in realistic parameter regimes without any effect of wind-induced surface heat exchange (WISHE). A detailed dynamical analysis for the linear waves is given herein and idealized nonlinear numerical simulations are reported in a companion paper. A maximum congestus heating leads during the dry phase of the wave. It is followed by an increase of the boundary layer θe, that is, CAPE, and lower troposphere moistening that precondition the upper troposphere for the next deep convective episode. In turn, deep convection consumes CAPE and removes moisture, thus yielding the dry episode.


Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 496
Author(s):  
Ana Campos-Ríos ◽  
Lola Rueda-Ruzafa ◽  
Salvador Herrera-Pérez ◽  
Paula Rivas-Ramírez ◽  
José Antonio Lamas

Visceral pain is one of the most common symptoms associated with functional gastrointestinal (GI) disorders. Although the origin of these symptoms has not been clearly defined, the implication of both the central and peripheral nervous systems in visceral hypersensitivity is well established. The role of several pathways in visceral nociception has been explored, as well as the influence of specific receptors on afferent neurons, such as voltage-gated sodium channels (VGSCs). VGSCs initiate action potentials and dysfunction of these channels has recently been associated with painful GI conditions. Current treatments for visceral pain generally involve opioid based drugs, ≠≠which are associated with important side-effects and a loss of effectiveness or tolerance. Hence, efforts have been intensified to find new, more effective and longer-lasting therapies. The implication of VGSCs in visceral hypersensitivity has drawn attention to tetrodotoxin (TTX), a relatively selective sodium channel blocker, as a possible and promising molecule to treat visceral pain and related diseases. As such, here we will review the latest information regarding this toxin that is relevant to the treatment of visceral pain and the possible advantages that it may offer relative to other treatments, alone or in combination.


Author(s):  
Paul I Palmer

We have been observing the Earth's upper atmosphere from space for several decades, but only over the past decade has the necessary technology begun to match our desire to observe surface air pollutants and climate-relevant trace gases in the lower troposphere, where we live and breathe. A new generation of Earth-observing satellites, capable of probing the lower troposphere, are already orbiting hundreds of kilometres above the Earth's surface with several more ready for launch or in the planning stages. Consequently, this is one of the most exciting times for the Earth system scientists who study the countless current-day physical, chemical and biological interactions between the Earth's land, ocean and atmosphere. First, I briefly review the theory behind measuring the atmosphere from space, and how these data can be used to infer surface sources and sinks of trace gases. I then present some of the science highlights associated with these data and how they can be used to improve fundamental understanding of the Earth's climate system. I conclude the paper by discussing the future role of satellite measurements of tropospheric trace gases in mitigating surface air pollution and carbon trading.


Sign in / Sign up

Export Citation Format

Share Document