scholarly journals The Role of Synoptic Cyclones for the Formation of Arctic Summer Circulation Patterns as Clustered by Self-Organizing Maps

Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 474 ◽  
Author(s):  
Min-Hee Lee ◽  
Joo-Hong Kim

Contribution of extra-tropical synoptic cyclones to the formation of mean summer atmospheric circulation patterns in the Arctic domain (≥60° N) was investigated by clustering dominant Arctic circulation patterns based on daily mean sea-level pressure using self-organizing maps (SOMs). Three SOM patterns were identified; one pattern had prevalent low-pressure anomalies in the Arctic Circle (SOM1), while two exhibited opposite dipoles with primary high-pressure anomalies covering the Arctic Ocean (SOM2 and SOM3). The time series of their occurrence frequencies demonstrated the largest inter-annual variation in SOM1, a slight decreasing trend in SOM2, and the abrupt upswing after 2007 in SOM3. Analyses of synoptic cyclone activity using the cyclone track data confirmed the vital contribution of synoptic cyclones to the formation of large-scale patterns. Arctic cyclone activity was enhanced in the SOM1, which was consistent with the meridional temperature gradient increases over the land–Arctic ocean boundaries co-located with major cyclone pathways. The composite daily synoptic evolution of each SOM revealed that all three SOMs persisted for less than five days on average. These evolutionary short-term weather patterns have substantial variability at inter-annual and longer timescales. Therefore, the synoptic-scale activity is central to forming the seasonal-mean climate of the Arctic.

Author(s):  
Min-Hee Lee ◽  
Joo-Hong Kim

The contribution of extra-tropical synoptic cyclones to the formation of summer-mean atmospheric circulation patterns in the Arctic is investigated by clustering the dominant Arctic circulation patterns by the self-organizing maps (SOMs) using the daily mean sea level pressure (MSLP) in the Arctic domain (≥ 60°N). Three SOM patterns are identified: one with prevalent low pressure anomalies in the Arctic Circle (SOM1) and two opposite dipoles with primary high pressure anomalies covering the Arctic Ocean (SOM2 and SOM3). The time series of summertime occurrence frequencies demonstrate the largest inter-annual variation in the SOM1, the slight decreasing trend in the SOM2, and the abrupt upswing after 2007 in the SOM3. The relevant analyses with produced cyclone track data confirm that the vital contribution. The Arctic cyclone activity is enhanced in the SOM1 because the meridional temperature gradient increases over the land–Arctic Ocean boundaries co-located with major extra-tropical cyclone pathways. The composite daily synoptic evolutions for each SOM reveal that the persistence of all the three SOMs is less than 5 days on average. These evolutionary short-term weather patterns have substantial variability at inter-annual and longer timescales. Therefore, the synoptic-scale activity is central to forming the seasonal-mean climate of the Arctic.


2012 ◽  
Vol 9 (6) ◽  
pp. 7257-7289 ◽  
Author(s):  
L. Durantou ◽  
A. Rochon ◽  
D. Ledu ◽  
G. Massé

Abstract. Dinoflagellate cyst (dinocyst) assemblages have been widely used over the Arctic Ocean to reconstruct sea-surface parameters on a quantitative basis. Such reconstructions provide insights into the role of anthropogenic vs natural forcings in the actual climatic trend. Here, we present the palynological analysis of a 36 cm-long core collected from the Mackenzie Through in the Canadian Beaufort Sea. Dinocyst assemblages were used to quantitatively reconstruct the evolution of sea surface conditions (temperature, salinity, sea ice) and freshwater palynomorphs influxes were used as local paleo-river discharge indicators over the last ~150 yr. Dinocyst assemblages are dominated by autotrophic taxa (68 to 96 %). Pentapharsodinium dalei is the dominant specie throughout most of the core, except at the top where the assemblages are dominated by Operculodinium centrocarpum. Quantitative reconstructions of sea surface parameters display a serie of relatively warm, lower sea ice and saline episodes in surface waters, alternately with relatively cool and low salinity episodes. The warm episodes are characterized with high dinocyst productivity. Variations of dinocyst influxes and reconstructed sea surface conditions are closely linked to large scale atmospheric circulation patterns such as the Pacific Decadal Oscillation (PDO) and to a lesser degree, the Arctic Oscillation (AO). Positive phases of the PDO correspond to increases of dinocyst influxes, warmer and saltier surface waters, which we associate with upwelling events of warm and relatively saline water from Pacific origin. Freshwater palynomorph influxes increased in three phases from AD 1857 until reaching maximum values in AD 1991, suggesting that the Mackenzie River discharge followed the same trend when its discharge peaked between AD 1989 and AD 1992. The PDO mode seems to dominate the climatic variations at multi-annual to decadal timescales in the Western Canadian Arctic and Beaufort Sea areas.


2018 ◽  
Vol 31 (21) ◽  
pp. 8895-8915 ◽  
Author(s):  
Michael R. Gallagher ◽  
Matthew D. Shupe ◽  
Nathaniel B. Miller

The Greenland Ice Sheet (GrIS) plays a crucial role in the Arctic climate, and atmospheric conditions are the primary modifier of mass balance. This analysis establishes the relationship between large-scale atmospheric circulation and principal determinants of GrIS mass balance: moisture, cloud properties, radiative forcing, and temperature. Using self-organizing maps (SOMs), observations from the Integrated Characterization of Energy, Clouds, Atmospheric State, and Precipitation at Summit (ICECAPS) project are categorized by daily sea level pressure (SLP) gradient. The results describe in detail how southerly, northerly, and zonal circulation regimes impact observations at Summit Station, Greenland. This southerly regime is linked to large anomalous increases in low-level liquid cloud formation, cloud radiative forcing (CRF), and surface warming at Summit Station. An individual southerly pattern relates to the largest positive anomalies, with the most extreme 25% of cases leading to CRF anomalies above 21 W m−2 and temperature anomalies beyond 8.5°C. Finally, the July 2012 extreme melt event is analyzed, showing that the prolonged ice sheet warming was related to persistence of these southerly circulation patterns, causing an unusually extended period of anomalous CRF and temperature. These results demonstrate a novel methodology, connecting daily atmospheric circulation to a relatively brief record of observations.


2016 ◽  
Vol 29 (13) ◽  
pp. 4977-4993 ◽  
Author(s):  
Alex D. Crawford ◽  
Mark C. Serreze

Abstract Extratropical cyclone activity over the central Arctic Ocean reaches its peak in summer. Previous research has argued for the existence of two external source regions for cyclones contributing to this summer maximum: the Eurasian continent interior and a narrow band of strong horizontal temperature gradients along the Arctic coastline known as the Arctic frontal zone (AFZ). This study incorporates data from an atmospheric reanalysis and an advanced cyclone detection and tracking algorithm to critically evaluate the relationship between the summer AFZ and cyclone activity in the central Arctic Ocean. Analysis of both individual cyclone tracks and seasonal fields of cyclone characteristics shows that the Arctic coast (and therefore the AFZ) is not a region of cyclogenesis. Rather, the AFZ acts as an intensification area for systems forming over Eurasia. As these systems migrate toward the Arctic Ocean, they experience greater deepening in situations when the AFZ is strong at midtropospheric levels. On a broader scale, intensity of the summer AFZ at midtropospheric levels has a positive correlation with cyclone intensity in the Arctic Ocean during summer, even when controlling for variability in the northern annular mode. Taken as a whole, these findings suggest that the summer AFZ can intensify cyclones that cross the coast into the Arctic Ocean, but focused modeling studies are needed to disentangle the relative importance of the AFZ, large-scale circulation patterns, and topographic controls.


2021 ◽  
Author(s):  
Manu Anna Thomas ◽  
Abhay Devasthale ◽  
Tiina Nygård

Abstract. The transport and distribution of short-lived climate forcers in the Arctic is influenced by the prevailing atmospheric circulation patterns. Understanding the coupling between pollutant distribution and dominant atmospheric circulation types is therefore important, not least to understand the processes governing the local processing of pollutants in the Arctic, but also to test the fidelity of chemistry transport models to simulate the transport from the southerly latitudes. Here, we use a combination of satellite based and reanalysis datasets spanning over 12 years (2007–2018) and investigate the concentrations of NO2, O3, CO and aerosols and their co-variability during 20 different atmospheric circulation types in the spring season (March, April and May) over the Arctic. We carried out a Self-Organizing Maps analysis of MSLP to derive these circulation types. Although almost all pollutants investigated here show statistically significant sensitivity to the circulation types, NO2 exhibits the strongest sensitivity among them. The circulation types with low-pressure systems located over the northeast Atlantic show a clear enhancement of NO2 and AOD in the European Arctic. The O3 concentrations are, however, decreased. The free tropospheric CO is increased over the Arctic during such events. The circulation types with atmospheric blocking over Greenland and northern Scandinavia show the opposite signal in which the NO2 concentrations are decreased and AODs are smaller than the climatological values. The O3 concentrations are, however, increased and the free tropospheric CO decreased during such events. The study provides the most comprehensive assessment so far of the sensitivity of springtime pollutant distribution to the atmospheric circulation types in the Arctic and also provides an observational basis for the evaluation of chemistry transport models.


2021 ◽  
Author(s):  
Jan Stryhal ◽  
Romana Beranová ◽  
Radan Huth

Abstract Self-organizing maps (SOMs) represent a popular classification tool, output of which has been used to link typical synoptic-scale circulation patterns to large-scale teleconnections, or modes of low-frequency circulation variability. However, recently there have been attempts to interpret SOM output directly as a continuum of teleconnections. In the present paper, we provide a theoretical study dealing with how predefined idealized modes of variability project onto SOM arrays. Three orthogonal modes are defined and their various linear combinations used to generate datasets of known structure. Multiple variants of SOMs that differ in their initialization are generated for SOMs of various shapes and sizes. The results show that how a mode projects on a SOM array is sensitive not only to data structure, but also to various SOM parameters. The leading mode of variability projects rather strongly on SOMs if its explained variance is markedly higher than that of the second-order mode; the remaining modes project considerably more weakly, and all modes tend to blend when their explained variance is close to each other, which leads to underrepresentation of some phases of modes and/or combinations of modes among the SOM patterns. Furthermore, non-linear features appear in SOM arrays even if the underlying modes of variability are strictly linear. The findings point to limitations in the applicability of SOMs in the research of teleconnections.


2012 ◽  
Vol 9 (12) ◽  
pp. 5391-5406 ◽  
Author(s):  
L. Durantou ◽  
A. Rochon ◽  
D. Ledu ◽  
G. Massé ◽  
S. Schmidt ◽  
...  

Abstract. Dinoflagellate cyst (dinocyst) assemblages have been widely used over the Arctic Ocean to reconstruct sea-surface parameters on a quantitative basis. Such reconstructions provide insights into the role of anthropogenic vs natural forcings in the actual climatic trend. Here, we present the palynological analysis of a dated 36 cm-long core collected from the Mackenzie Trough in the Canadian Beaufort Sea. Dinocyst assemblages were used to quantitatively reconstruct the evolution of sea-surface conditions (temperature, salinity, sea ice) and freshwater palynomorphs fluxes were used as local paleo-river discharge indicators over the last ~ 150 yr. Dinocyst assemblages are dominated by autotrophic taxa (68 to 96%). Cyst of Pentapharsodinium dalei is the dominant species throughout most of the core, except at the top where the assemblages are dominated by Operculodinium centrocarpum. Quantitative reconstructions of sea-surface parameters display a series of relatively warm, lower sea ice and saline episodes in surface waters, alternately with relatively cool and low salinity episodes. Variations of dinocyst fluxes and reconstructed sea-surface conditions may be closely linked to large scale atmospheric circulation patterns such as the Pacific Decadal Oscillation (PDO) and to a lesser degree, the Arctic Oscillation (AO). Positive phases of the PDO correspond to increases of dinocyst fluxes, warmer and saltier surface waters, which we associate with upwelling events of warm and relatively saline water from Pacific origin. Freshwater palynomorph fluxes increased in three phases from AD 1857 until reaching maximum values in AD 1991, suggesting that the Mackenzie River discharge followed the same trend when its discharge peaked between AD 1989 and AD 1992. The PDO mode seems to dominate the climatic variations at multi-annual to decadal timescales in the western Canadian Arctic and Beaufort Sea areas.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Adeoluwa Akande ◽  
Ana Cristina Costa ◽  
Jorge Mateu ◽  
Roberto Henriques

The explosion of data in the information age has provided an opportunity to explore the possibility of characterizing the climate patterns using data mining techniques. Nigeria has a unique tropical climate with two precipitation regimes: low precipitation in the north leading to aridity and desertification and high precipitation in parts of the southwest and southeast leading to large scale flooding. In this research, four indices have been used to characterize the intensity, frequency, and amount of rainfall over Nigeria. A type of Artificial Neural Network called the self-organizing map has been used to reduce the multiplicity of dimensions and produce four unique zones characterizing extreme precipitation conditions in Nigeria. This approach allowed for the assessment of spatial and temporal patterns in extreme precipitation in the last three decades. Precipitation properties in each cluster are discussed. The cluster closest to the Atlantic has high values of precipitation intensity, frequency, and duration, whereas the cluster closest to the Sahara Desert has low values. A significant increasing trend has been observed in the frequency of rainy days at the center of the northern region of Nigeria.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 179
Author(s):  
Roxanne Ahmed ◽  
Terry Prowse ◽  
Yonas Dibike ◽  
Barrie Bonsal

Spring freshet is the dominant annual discharge event in all major Arctic draining rivers with large contributions to freshwater inflow to the Arctic Ocean. Research has shown that the total freshwater influx to the Arctic Ocean has been increasing, while at the same time, the rate of change in the Arctic climate is significantly higher than in other parts of the globe. This study assesses the large-scale atmospheric and surface climatic conditions affecting the magnitude, timing and regional variability of the spring freshets by analyzing historic daily discharges from sub-basins within the four largest Arctic-draining watersheds (Mackenzie, Ob, Lena and Yenisei). Results reveal that climatic variations closely match the observed regional trends of increasing cold-season flows and earlier freshets. Flow regulation appears to suppress the effects of climatic drivers on freshet volume but does not have a significant impact on peak freshet magnitude or timing measures. Spring freshet characteristics are also influenced by El Niño-Southern Oscillation, the Pacific Decadal Oscillation, the Arctic Oscillation and the North Atlantic Oscillation, particularly in their positive phases. The majority of significant relationships are found in unregulated stations. This study provides a key insight into the climatic drivers of observed trends in freshet characteristics, whilst clarifying the effects of regulation versus climate at the sub-basin scale.


Sign in / Sign up

Export Citation Format

Share Document