scholarly journals Seasonal Control of Water-Soluble Inorganic Ions in PM2.5 from Nanning, a Subtropical Monsoon Climate City in Southwestern China

Atmosphere ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 5 ◽  
Author(s):  
Wei Guo ◽  
Chenkui Long ◽  
Zhongyi Zhang ◽  
Nengjian Zheng ◽  
Huayun Xiao ◽  
...  

In this study, we measured the daily water-soluble inorganic ions (WSIIs) concentration (including SO42−, NO3−, NH4+, Ca2+, K+, Cl−, Na+, Mg2+, and F−) of PM2.5 (particulate matter with a diameter smaller than 2.5 μm) throughout the year in Nanning (a typical subtropical monsoon climate city in southwestern China) to explore the influence of seasonal climate change on the properties of PM2.5 pollution. This suggested that SO42−, NO3−, and NH4+ were the main component of WSIIs in Nanning. Secondary inorganic ions from fossil fuel combustion, agricultural activities, and automobile emissions were the main contributors to PM2.5, contributing more than 60% to PM2.5. Compared with the wet season, the contributions of different sources increased in the dry season (including pollution days); of these sources, automobile emissions and coal combustion emissions increased the most (about nine times and seven times, respectively). Seasonal weather and climate change affected the concentration level of WSIIs. During the wet season, higher temperatures and abundant rainfalls contributed to the volatilization and removal of WSIIs in PM2.5, while in the dry season and on pollution days, lower temperatures and less precipitation, higher emissions, and poor diffusion conditions contributed to the accumulation of WSIIs in PM2.5. NH4HSO4, (NH4)2SO4 and NH4NO3 were the main chemical forms of secondary inorganic ions. Sufficient NH3, intense solar radiation, and moist particulate matter surface promoted the formation of secondary inorganic ions. The higher temperature contributed to the volatilization of secondary inorganic ions.

2010 ◽  
Vol 113-116 ◽  
pp. 1439-1442
Author(s):  
Kun Wang ◽  
Hui Ling Duan ◽  
Li Kun Huang ◽  
Wen Shuai Wang

We analyzed characteristics and concentrations of water-soluble inorganic ions based on fixed routine collection of atmospheric particulate matter (PM10, PM2.5) samples in Harbin during August 2008 and May 2009. The samplers we sampling is produced by Wuhan Tianhong Intelligent Instrument, we analyzed the water-soluble inorganic ions by using Ion Chromatographic (IC, DX120, Diana, USA) and Indicative Coupled Plasma-Atomic Emission Spectroscopy (ICP-AES, Model 5300, Perkin Elmer, USA). The research showed that: SO42-, NO3-, NH4+ were the top three concentrated of the water-soluble inorganic ions ,the average concentrations were 10.3 μg/m3, 5.8 μg/m3, 8.2 μg/m3 respectively during sampling. Ca2+ was higher in the particulate > 2.5μm, while SO42- and NH4+ were higher in the particulate < 2.5μm, the correlation analysis inferred that the main form of SO42- in atmospheric particle was ammonium sulfate.


2017 ◽  
Vol 75 (2) ◽  
pp. 155-169 ◽  
Author(s):  
Telma Castro ◽  
Oscar Peralta ◽  
Dara Salcedo ◽  
José Santos ◽  
María I. Saavedra ◽  
...  

2019 ◽  
Author(s):  
Ye Tao ◽  
Jennifer G. Murphy

Abstract. Aerosol pH is difficult to measure directly but can be calculated if the chemical composition is known with sufficient accuracy and precision to calculate the aerosol water content and the H+ concentration through ion balance. In practical terms, simultaneous measurements of at least one semi-volatile constitute, e.g. NH3 or HNO3, are required to provide a constraint on the calculation of pH. Long-term records of aerosol pH are scarce due to the limited monitoring of NH3 in conjunction with PM2.5. In this study, 10-year (2007–2016) records of pH of PM2.5 at six eastern Canadian sites were calculated using the E-AIM II model with the input of gaseous NH3, gaseous HNO3 and major water-soluble inorganic ions in PM2.5 provided by Canada's National Air Pollution Surveillance (NAPS) Program. Clear seasonal cycles of aerosol pH were found with lower pH (~2) in summer and higher pH (~3) in winter consistently across all six sites, while the day-to-day variations of aerosol pH were higher in winter compared to summer. Tests of the sensitivity of aerosol pH to meteorological parameters demonstrate that the changes in ambient temperature largely drive the seasonal cycle of aerosol pH. The sensitivity of pH to chemical composition shows that pH has different responses to the changes in chemical composition in different seasons. During summertime, aerosol pH was mainly determined by temperature with limited impact from changes in NHx or sulfate concentrations. However, in wintertime, both meteorological parameters and chemical composition contribute to the variations in aerosol pH, resulting in the larger variation during wintertime. This study reveals that the sensitivity of aerosol pH to chemical composition is distinctly different under different meteorological conditions and needs to be carefully examined for any particular region.


2012 ◽  
Vol 12 (11) ◽  
pp. 28661-28703 ◽  
Author(s):  
S. L. Mkoma ◽  
K. Kawamura ◽  
P. Fu

Abstract. Atmospheric aerosol samples of PM2.5 and PM10 were collected at a rural site in Tanzania in 2011 during wet and dry seasons and they were analysed for carbonaceous components, levoglucosan and water-soluble inorganic ions. The mean mass concentrations of PM2.5 and PM10 were 28.2&amp;pm;6.4 μg m−3 and 47&amp;pm;8.2 μg m−3 in wet season, and 39.1&amp;pm;9.8 μg m−3 and 61.4&amp;pm;19.2 μg m−3 in dry season, respectively. Total carbon (TC) accounted for 16–19% of the PM2.5 mass and 13–15% of the PM10 mass. On average, 85.9 to 88.7% of TC in PM2.5 and 87.2 to 90.1% in PM10 was organic carbon (OC), of which 67–72% and 63% was found to be water-soluble organic carbon (WSOC) in PM2.5 and PM10, respectively. Water-soluble potassium (K+) and sulphate (SO42−) in PM2.5 and, sodium (Na+) and SO42− in PM10 were the dominant ionic species. We found, that concentrations of biomass burning tracers (levoglucosan and mannosan) well correlated with non-sea-salt-K+, WSOC and OC in the aerosols from Tanzania, East Africa. Mean contributions of levoglucosan to OC ranged between 3.9–4.2% for PM2.5 and 3.5–3.8% for PM10. This study demonstrates that emissions from biomass- and biofuel-burning activities followed by atmospheric photochemical processes mainly control the air quality in Tanzania.


2020 ◽  
Vol 194 ◽  
pp. 04058
Author(s):  
Dongqing Fang ◽  
Junli Jin ◽  
Wei Huang ◽  
Yong Zhang ◽  
Wanqi Sun ◽  
...  

In order to understand the seasonal levels, formation mechanism and atmospheric chemical behaviours of water-soluble ions of PM10 in the Yangtze River Delta (YRD) region, aerosol samples were collected from January 2nd to December 28th, 2017 at a WMO/GAW regional background station in Lin’an. The concentrations of PM mass and nine water-soluble inorganic ions were obtained. The annual average concentration of PM10 was 59.9±33.9 μg m−3, lower than those reported in previous studies, indicating air quality of YRD region was improved. Nine water-soluble inorganic ions was accounted for 30.2-45.1% of the total PM mass, while ammonium (NH4+), sulfate (SO42+), as well as nitrate (NO3-) were the major ions which contributed 86.3% to total ions. The NO3- concentration was lowest in summer but highest in winter, suggesting it was likely influenced by thermodynamics. The levels of SO42- in spring and winter were related to photochemical reaction and regional transportation. Except for the SNA, Ca2+ was highest in four seasons likely due to sand storm and road fugitive dust. The annual mean ratio of [NO3-]/[SO42-] was nearly to 1, indicating mobile and stationary sources were equally important in Lin’an. The mean nitrogen oxidation ratio (NOR) and sulfur oxidation ratio (SOR) were 0.22±0.13 and 0.41±0.13, respectively, suggesting secondary formation was significant in the atmosphere at the background station of YRD region.


Sign in / Sign up

Export Citation Format

Share Document