scholarly journals High-Resolution Biomass Burning Aerosol Transport Simulations in the Tropics

Atmosphere ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 91
Author(s):  
Nurzahziani ◽  
Chinnawat Surussavadee ◽  
Thanchanok Noosook

This study evaluates the performance of the Weather Research and Forecasting Model with Chemistry (WRF-Chem) for simulating biomass burning aerosol transport at high resolution in the tropics using two different biomass burning emission inventories. Hourly, daily, and monthly average PM10 dry mass concentrations at 5 km resolution—simulated separately using the Brazilian Biomass Burning Emission Model (WRF-3BEM) and the Fire Inventory from NCAR (WRF-FINN) and their averages (WRF-AVG) for 3 months from February to April—are evaluated, using measurements from ground stations distributed in northern Thailand for 2014 and 2015. Results show that WRF-3BEM agrees well with observations and performs much better than WRF-FINN and WRF-AVG. WRF-3BEM simulations are almost unbiased, while those of WRF-FINN and WRF-AVG are significantly overestimated due to significant overestimates of FINN emissions. WRF-3BEM and the measured monthly average PM10 concentrations for all stations and both years are 89.22 and 87.20 μg m−3, respectively. The root mean squared error of WRF-3BEM simulated monthly average PM10 concentrations is 72.00 and 47.01% less than those of WRF-FINN and WRF-AVG, respectively. The correlation coefficient of WRF-3BEM simulated monthly PM10 concentrations and measurements is 0.89. WRF-3BEM can provide useful biomass burning aerosol transport simulations for the northern region of Thailand.

2010 ◽  
Vol 10 (24) ◽  
pp. 12005-12023 ◽  
Author(s):  
O. Cavalieri ◽  
F. Cairo ◽  
F. Fierli ◽  
G. Di Donfrancesco ◽  
M. Snels ◽  
...  

Abstract. In this work, we have studied the seasonal and inter-annual variability of the aerosol vertical distribution over Sahelian Africa for the years 2006, 2007 and 2008, characterizing the different kind of aerosols present in the atmosphere in terms of their optical properties observed by ground-based and satellite instruments, and their sources searched for by using trajectory analysis. This study combines data acquired by three ground-based micro lidar systems located in Banizoumbou (Niger), Cinzana (Mali) and M'Bour (Senegal) in the framework of the African Monsoon Multidisciplinary Analysis (AMMA), by the AEROsol RObotic NETwork (AERONET) sun-photometers and by the space-based Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite (Cloud-Aerosol Lidar and Infrared Pathfinder Observations). During winter, the lower levels air masses arriving in the Sahelian region come mainly from North, North-West and from the Atlantic area, while in the upper troposphere air flow generally originates from West Africa, crossing a region characterized by the presence of large biomass burning sources. The sites of Cinzana, Banizoumbou and M'Bour, along a transect of aerosol transport from East to West, are in fact under the influence of tropical biomass burning aerosol emission during the dry season, as revealed by the seasonal pattern of the aerosol optical properties, and by back-trajectory studies. Aerosol produced by biomass burning are observed mainly during the dry season and are confined in the upper layers of the atmosphere. This is particularly evident for 2006, which was characterized by a large presence of biomass burning aerosols in all the three sites. Biomass burning aerosol is also observed during spring when air masses originating from North and East Africa pass over sparse biomass burning sources, and during summer when biomass burning aerosol is transported from the southern part of the continent by the monsoon flow. During summer months, the entire Sahelian region is under the influence of Saharan dust aerosols: the air masses in low levels arrive from West Africa crossing the Sahara desert or from the Southern Hemisphere crossing the Guinea Gulf while in the upper layers air masses still originate from North, North-East. The maximum of the desert dust activity is observed in this period which is characterized by large AOD (above 0.2) and backscattering values. It also corresponds to a maximum in the extension of the aerosol vertical distribution (up to 6 km of altitude). In correspondence, a progressive cleaning up of the lowermost layers of the atmosphere is occurring, especially evident in the Banizoumbou and Cinzana sites. Summer is in fact characterized by extensive and fast convective phenomena. Lidar profiles show at times large dust events loading the atmosphere with aerosol from the ground up to 6 km of altitude. These events are characterized by large total attenuated backscattering values, and alternate with very clear profiles, sometimes separated by only a few hours, indicative of fast removal processes occurring, likely due to intense convective and rain activity. The inter-annual variability in the three year monitoring period is not very significant. An analysis of the aerosol transport pathways, aiming at detecting the main source regions, revealed that air originated from the Saharan desert is present all year long and it is observed in the lower levels of the atmosphere at the beginning and at the end of the year. In the central part of the year it extends upward and the lower levels are less affected by air masses from Saharan desert when the monsoon flow carries air from the Guinea Gulf and the Southern Hemisphere inland.


2017 ◽  
Vol 122 (12) ◽  
pp. 6391-6415 ◽  
Author(s):  
Sampa Das ◽  
H. Harshvardhan ◽  
Huisheng Bian ◽  
Mian Chin ◽  
Gabriele Curci ◽  
...  

2020 ◽  
Vol 20 (4) ◽  
pp. 2387-2405 ◽  
Author(s):  
Rachel A. Braun ◽  
Mojtaba Azadi Aghdam ◽  
Paola Angela Bañaga ◽  
Grace Betito ◽  
Maria Obiminda Cambaliza ◽  
...  

Abstract. This study analyzes long-range transport of aerosol and aerosol chemical characteristics based on instances of high- and low-aerosol-loading events determined via ground-based size-resolved aerosol measurements collected at the Manila Observatory in Metro Manila, Philippines, from July to October 2018. Multiple data sources, including models, remote sensing, and in situ measurements, are used to analyze the impacts of long-range aerosol transport on Metro Manila and the conditions at the local and synoptic scales facilitating this transport. Through the use of case studies, evidence of long-range transport of biomass burning aerosol and continental emissions is identified in Metro Manila. Long-range transport of biomass burning aerosol from the Maritime Continent, bolstered by southwesterly flow and permitted by low rainfall, was identified through model results and the presence of biomass burning tracers (e.g., K, Rb) in the ground-based measurements. The impacts of emissions transported from continental East Asia on the aerosol characteristics in Metro Manila are also identified; for one of the events analyzed, this transport was facilitated by the nearby passage of a typhoon. Changes in the aerosol size distributions, water-soluble chemical composition, and contributions of various organic aerosol species to the total water-soluble organic aerosol were examined for the different cases. The events impacted by biomass burning transport had the overall highest concentration of water-soluble organic acids, while the events impacted by long-range transport from continental East Asia showed high percent contributions from shorter-chain dicarboxylic acids (i.e., oxalate) that are often representative of photochemical and aqueous processing in the atmosphere. The low-aerosol-loading event was subject to a larger precipitation accumulation than the high-aerosol events, indicative of wet scavenging as an aerosol sink in the study region. This low-aerosol event was characterized by a larger relative contribution from supermicrometer aerosols and had a higher percent contribution from longer-chain dicarboxylic acids (i.e., maleate) to the water-soluble organic aerosol fraction, indicating the importance of both primary aerosol emissions and local emissions.


2016 ◽  
Author(s):  
Marc D. Mallet ◽  
Maximilien J. Desservettaz ◽  
Branka Miljevic ◽  
Andelija Milic ◽  
Zoran D. Ristovski ◽  
...  

Abstract. The SAFIRED (Savannah Fires in the Early Dry Season) campaign took place from 29th of May, 2014 until the 30th June, 2014 at the Australian Tropical Atmospheric Research Station (ATARS) in the Northern Territory, Australia. The purpose of this campaign was to investigate emissions from fires in the early dry season in northern Australia. Measurements were made of biomass burning aerosols, volatile organic compounds, polycyclic aromatic carbons, greenhouse gases, radon, mercury cycle, and trace metals. Aspects of the biomass burning aerosol emissions investigated included; emission factors of various emitted species, physical and chemical aerosol properties, aerosol aging, micronutrient supply to the ocean, nucleation, and aerosol water uptake. Over the course of the month-long campaign, biomass burning signals were prevalent and emissions from several large single burning events were observed at ATARS. Biomass burning emissions dominated the gas and aerosol concentrations in this region. Nine major biomass burning events were identified and associated with intense or close individual smoke plumes. Dry season fires are extremely frequent and widespread across the northern region of Australia, which suggests that the measured aerosol and gaseous emissions at ATARS are likely representative of signals across the entire region of north Australia. Air mass forward trajectories show that these biomass burning emissions are carried north west over the Timor Sea and could influence the atmosphere over Indonesia and the tropical atmosphere over the Indian Ocean. The outcomes of this campaign will be numerous. This region is an environment with little human impact and provides a unique look into the characteristics of biomass burning aerosol without the influence of other significant emission sources. Relationships between the aerosol physical and chemical properties, gas concentrations and meteorological data for the entire month will provide fundamental knowledge required to understand the influence of early dry season burning in this tropical region on the atmosphere. In this paper we present characteristics of the biomass burning observed at the sampling site and provide an overview of the more specific outcomes of the SAFIRED campaign.


2021 ◽  
Vol 13 (10) ◽  
pp. 2001
Author(s):  
Antonella Boselli ◽  
Alessia Sannino ◽  
Mariagrazia D’Emilio ◽  
Xuan Wang ◽  
Salvatore Amoruso

During the summer of 2017, multiple huge fires occurred on Mount Vesuvius (Italy), dispersing a large quantity of ash in the surrounding area ensuing the burning of tens of hectares of Mediterranean scrub. The fires affected a very large area of the Vesuvius National Park and the smoke was driven by winds towards the city of Naples, causing daily peak values of particulate matter (PM) concentrations at ground level higher than the limit of the EU air quality directive. The smoke plume spreading over the area of Naples in this period was characterized by active (lidar) and passive (sun photometer) remote sensing as well as near-surface (optical particle counter) observational techniques. The measurements allowed us to follow both the PM variation at ground level and the vertical profile of fresh biomass burning aerosol as well as to analyze the optical and microphysical properties. The results evidenced the presence of a layer of fine mode aerosol with large mean values of optical depth (AOD > 0.25) and Ångstrom exponent (γ > 1.5) above the observational site. Moreover, the lidar ratio and aerosol linear depolarization obtained from the lidar observations were about 40 sr and 4%, respectively, consistent with the presence of biomass burning aerosol in the atmosphere.


2021 ◽  
Vol 13 (10) ◽  
pp. 2012
Author(s):  
Yue Yu ◽  
Jinmei Pan ◽  
Jiancheng Shi

Natural snow, one of the most important components of the cryosphere, is fundamentally a layered medium. In forward simulation and retrieval, a single-layer effective microstructure parameter is widely used to represent the emission of multiple-layer snowpacks. However, in most cases, this parameter is fitted instead of calculated based on a physical theory. The uncertainty under different frequencies, polarizations, and snow conditions is uncertain. In this study, we explored different methods to reduce the layered snow properties to a set of single-layer values that can reproduce the same brightness temperature (TB) signal. A validated microwave emission model of layered snowpack (MEMLS) was used as the modelling tool. Multiple-layer snow TB from the snow’s surface was compared with the bulk TB of single-layer snow. The methods were tested using snow profile samples from the locally validated and global snow process model simulations, which follow the natural snow’s characteristics. The results showed that there are two factors that play critical roles in the stability of the bulk TB error, the single-layer effective microstructure parameter, and the reflectivity at the air–snow and snow–soil boundaries. It is important to use the same boundary reflectivity as the multiple-layer snow case calculated using the snow density at the topmost and bottommost layers instead of the average density. Afterwards, a mass-weighted average snow microstructure parameter can be used to calculate the volume scattering coefficient at 10.65 to 23.8 GHz. At 36.5 and 89 GHz, the effective microstructure parameter needs to be retrieved based on the product of the snow layer transmissivity. For thick snow, a cut-off threshold of 1/e is suggested to be used to include only the surface layers within the microwave penetration depth. The optimal method provides a root mean squared error of bulk TB of less than 5 K at 10.65 to 36.5 GHz and less than 10 K at 89 GHz for snow depths up to 130 cm.


2016 ◽  
Vol 17 (11) ◽  
pp. 577-585 ◽  
Author(s):  
Aline Macedo de Oliveira ◽  
Glauber Lopes Mariano ◽  
Marcelo Félix Alonso ◽  
Ericka Voss Chagas Mariano

2021 ◽  
Author(s):  
Matthew Kasoar ◽  
Douglas Hamilton ◽  
Daniela Dalmonech ◽  
Stijn Hantson ◽  
Gitta Lasslop ◽  
...  

<p>The CMIP6 Shared Socioeconomic Pathway (SSP) scenarios include projections of future changes in anthropogenic biomass-burning.  Globally, they assume a decrease in total fire emissions over the next century under all scenarios.  However, fire regimes and emissions are expected to additionally change with future climate, and the methodology used to project fire emissions in the SSP scenarios is opaque.</p><p>We aim to provide a more traceable estimate of future fire emissions under CMIP6 scenarios and evaluate the impacts for aerosol radiative forcing.  We utilise interactive wildfire emissions from four independent land-surface models (CLM5, JSBACH3.2, LPJ-GUESS, and ISBA-CTRIP) used within CMIP6 ESMs, and two different machine-learning methods (a random forest, and a generalised additive model) trained on historical data, to predict year 2100 biomass-burning aerosol emissions consistent with the CMIP6-modelled climate for three different scenarios: SSP126, SSP370, and SSP585.  This multi-method approach provides future fire emissions integrating information from observations, projections of climate, socioeconomic parameters and changes in vegetation distribution and fuel loads.</p><p>Our analysis shows a robust increase in fire emissions for large areas of the extra-tropics until the end of this century for all methods.  Although this pattern was present to an extent in the original SSP projections, both the interactive fire models and machine-learning methods predict substantially higher increases in extra-tropical emissions in 2100 than the corresponding SSP datasets.  Within the tropics the signal is mixed. Increases in emissions are largely driven by the temperature changes, while in some tropical areas reductions in fire emissions are driven by human factors and changes in precipitation, with the largest reductions in Africa. The machine-learning methods show a stronger reduction in the tropics than the interactive fire models, however overall there is strong agreement between both the models and the machine-learning methods.</p><p>We then use additional nudged atmospheric simulations with two state-of-the-art composition-climate models, UKESM1 and CESM2, to diagnose the impact of these updated fire emissions on aerosol burden and radiative forcing, compared with the original SSP prescribed emissions.  We provide estimates of future fire radiative forcing, compared to modern-day, under these CMIP6 scenarios which span both the severity of climate change in 2100, and the rate of reduction of other aerosol species.</p>


Sign in / Sign up

Export Citation Format

Share Document