scholarly journals Influence of Internal Structure and Composition on Head’s Local Thermal Sensation and Temperature Distribution

Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 218
Author(s):  
Shuai He ◽  
Yinghua Zhang ◽  
Zhian Huang ◽  
Ge Zhang ◽  
Yukun Gao

A personalized thermal environment is an effective way to ensure a good thermal sensation for individuals. Since local thermal sensation and temperature distribution are affected by individual physiological differences, it is necessary to study the effects of physiological parameters. The purpose of this study was to investigate the effects of internal structures and tissue composition on head temperature distribution and thermal sensation. A new mathematical model based on fuzzy logic control was established, the internal structure and tissue composition of the head were obtained by magnetic resonance imaging (MRI), and the local thermal sensation (LTS) index was used to evaluate the thermal sensation. Based on the mathematical model and the real physiological data, the head temperature and local sensation changes under different parameters were investigated, and the sensitivity of thermal sensation relative to the differences in tissue thickness was analyzed. The results show that skin tissue had the highest influence ( C s k i n = 0.0180 ) on head temperature, followed by muscle tissue ( C m u s c l e = 0.0127 ), and the influence of adipose tissue ( C f a t = 0.0097 ) was the lowest. LTS was most sensitive to skin thickness variation, with an average sensitivity coefficient of 1.58, while the muscle tissue had an average sensitivity coefficient of 0.2, and the sensitivity coefficient of fat was relatively small, at a value of 0.04.

2020 ◽  
Author(s):  
Suzan Farhang-Sardroodi ◽  
Kathleen P. Wilkie

Cancer cachexia is a debilitating condition characterized by an extreme loss of skeletal muscle mass which negatively impacts patient’s quality of life, reduces their ability to sustain anticancer therapies, and increases the risk of mortality. Recent discoveries have identified the myostatin/activin-ActRIIB pathway as critical to muscle wasting by inducing satellite cell quiescence and increasing muscle-specific ubiquitin ligases responsible for atrophy. Remarkably, pharmacological blockade of the ActRIIB pathway has shown to reverse muscle wasting and prolong the survival time of tumor-bearing animals. To explore the implications of this signaling pathway and potential therapeutic targets in cachexia, we construct a novel mathematical model of muscle tissue subjected to tumor-derived cachexic factors. The model formulation tracks the intercellular interactions between cancer, satellite cell, and muscle cell populations. The model is parameterized by fitting to colon-26 mouse model data, and analysis provides insight into tissue growth in healthy, cancerous, and post-treatment conditions. Model predictions suggest that cachexia fundamentally alters muscle tissue health, as measured by the stem cell ratio, and this is only partially recovered by anti-cachexia treatment. Our mathematical findings suggest that the activation and proliferation of satellite cells, after blocking the myostatin/activin B pathway, is required to partially recover cancer-induced muscle loss.


2018 ◽  
Vol 118 (9) ◽  
pp. 1789-1800 ◽  
Author(s):  
Hannah L. Dimmick ◽  
Jonathan D. Miller ◽  
Adam J. Sterczala ◽  
Michael A. Trevino ◽  
Trent J. Herda

2019 ◽  
Vol 29 (6) ◽  
pp. 775-782
Author(s):  
Masanari Ukai ◽  
Tatsuo Nobe

In this study, the authors evaluated clothing insulation and changes in the metabolic rate of individuals in an office environment to determine thermal comfort. Clothing was evaluated using a questionnaire completed by 1306 workers in nine offices. The metabolic rates of 86 workers in three offices were measured using a physical activity meter. The distribution of the temperature at which a person in the room perceived a neutral thermal sensation was then calculated from the determined metabolic rates and clothing insulation values. The results demonstrate a noticeable difference between the average and most frequent values during the summer. Moreover, the required temperature distribution is not normal; rather, it is broad and skewed to the low-temperature side. Therefore, even if a thermally uniform environment is provided at the average required temperature by preventing temporal and spatial variations in the thermal environment, complaints of an unacceptably hot thermal environment are more likely to occur than complaints of an excessively cold thermal environment.


2020 ◽  
Vol 9 (7) ◽  
pp. 2029 ◽  
Author(s):  
Suzan Farhang-Sardroodi ◽  
Kathleen P. Wilkie

Cancer cachexia is a debilitating condition characterized by an extreme loss of skeletal muscle mass, which negatively impacts patients’ quality of life, reduces their ability to sustain anti-cancer therapies, and increases the risk of mortality. Recent discoveries have identified the myostatin/activin A/ActRIIB pathway as critical to muscle wasting by inducing satellite cell quiescence and increasing muscle-specific ubiquitin ligases responsible for atrophy. Remarkably, pharmacological blockade of the ActRIIB pathway has been shown to reverse muscle wasting and prolong the survival time of tumor-bearing animals. To explore the implications of this signaling pathway and potential therapeutic targets in cachexia, we construct a novel mathematical model of muscle tissue subjected to tumor-derived cachectic factors. The model formulation tracks the intercellular interactions between cancer cell, satellite cell, and muscle cell populations. The model is parameterized by fitting to colon-26 mouse model data, and the analysis provides insight into tissue growth in healthy, cancerous, and post-cachexia treatment conditions. Model predictions suggest that cachexia fundamentally alters muscle tissue health, as measured by the stem cell ratio, and this is only partially recovered by anti-cachexia treatment. Our mathematical findings suggest that after blocking the myostatin/activin A pathway, partial recovery of cancer-induced muscle loss requires the activation and proliferation of the satellite cell compartment with a functional differentiation program.


Author(s):  
Victorita Radulescu

Abstract The thermal pollution, with major effects on the water quality degradation by any process involving the temperature transfer, represents nowadays a major concern for the entire scientific world. The turbulent heat and the mass transfer have an essential role in the processes of thermal pollution, mainly in problems associated with the transport of hot fluids in long heating pipes, thermal flows associated with big thermo-electric power plants, etc. In the last decades, the problems of the turbulent heat and mass transfer were analyzed for different dedicated applications. The present paper, in the first part, estimates the universal law of the velocity distribution near a solid wall, with a specific interpretation of the fluid viscosity, valid for all types of flows. Most of the scientific researches associate nowadays both the turbulent heat and the mass transfer with the Prandtl number. In the turbulent fluid flow near a solid and rigid surface, there are three flowing domains, laminar, transient, and fully turbulent, each one with its characteristics. In this paper, it is assumed that the friction effort at the wall remains valid at any distance from the wall, but with different forms associated with the dynamic viscosity. By using the superposition of the molecular and turbulent viscosity and by creating the interdependence between the molecular and turbulent transfer coefficients is estimated the mathematical model of the velocity profile for the fluid flow and temperature distribution. Three supplementary hypotheses have been assumed to estimate the dependence between the laminar and thermal sub-layer and the hydrodynamic sub-layer. The theoretical obtained distribution was compared with some experimental results from the literature and it was observed there is a good agreement between them; the differences are smaller than 3%. In the second part of the paper is determined the temperature field for a fluid flowing also in presence of the solid surfaces with different temperatures, associated not only with the Prandtl number but also with the fluid viscosity and its dependence with the temperature, correlated with the Grashoff number. In the next paragraph is used the concept of the laminar substrate with different thicknesses for the hydrodynamic flows with thermal transfer to the solid walls, and also the inverse transfer from the solid walls affecting the fluid flow and the mass transfer. The obtained mathematical model is correlated with the semi-empirical data from the literature. By numerical modeling, the obtained results were compared with the experimental measurements and it was determined the dependence between the Stanton number and the Prandtl number. The numerical results demonstrate a good agreement with the experimental results in a wide range of the Prandtl numbers from 0.5 to 3000. Finally, are mentioned some conclusions and references.


2020 ◽  
Vol 26 (6) ◽  
pp. 465-474
Author(s):  
Deepak Singh ◽  
Dhananjay Singh ◽  
Sattar Husain

This research article reports the computational analysis of temperature distribution in microwave-heated convenience food such as potato. The detailed study of temperature (because temperature is a function of bacterial inactivation) and microwave powers along with drying time for the preservation of food material has been presented. Therefore, a mathematical model for potato sample is developed to predict the behavior of temperature distribution at each possible point and different shapes (slab, cylindrical, and spherical) of food material. The developed mathematical model is programmed by MATLAB software. Another parameter, microwave power is also a function of temperature. The ranging values of various microwave powers (125 W, 375 W, 625 W, 875 W, and 1250 W) along with different values of drying time (0 to 10 minutes) have been used for computation. The obtained results show the uniformity of temperature distribution throughout the whole product in the form of a three-dimensional structure. The model provides the minimum and maximum temperature ranges in specimens without performing an experiment which depicts the condition of bacterial inactivation.


2011 ◽  
Vol 374-377 ◽  
pp. 1882-1886
Author(s):  
Li Juan Wang ◽  
Yan Feng Liu ◽  
Jia Ping Liu ◽  
Fei Lu

Before the construction of hydraulic structure, aggregate must be cooled or heated by air (we call it aggregate air cooling or heating in this paper) or other technologies to the required temperature. Previous model of aggregate air cooling or heating cannot provide the center temperature of each aggregate. So a more accurate mathematical model is developed to determine the thermal performance of aggregate, and the surface heat transfer coefficient of wet aggregate is revised. This model can predict the center temperature of an aggregate and can accurately calculate the cold down time or temperature distribution of aggregate, so that the refrigeration or heating capacity can be reasonably supplied. It’s significant for foundation engineering of hydraulic structure.


Sign in / Sign up

Export Citation Format

Share Document