scholarly journals Observed Trends and Variability of Temperature and Precipitation and Their Global Teleconnections in the Upper Indus Basin, Hindukush-Karakoram-Himalaya

Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 973
Author(s):  
Azfar Hussain ◽  
Jianhua Cao ◽  
Ishtiaq Hussain ◽  
Saira Begum ◽  
Mobeen Akhtar ◽  
...  

Having an extreme topography and heterogeneous climate, the Upper Indus Basin (UIB) is more likely to be affected by climate change and it is a crucial area for climatological studies. Based on the monthly minimum temperature (Tmin), maximum temperature (Tmax) and precipitation from nine meteorological stations, the spatiotemporal variability of temperature and precipitation were analyzed on monthly, seasonal, and annual scales. Results show a widespread significant increasing trend of 0.14 °C/decade for Tmax, but a significant decreasing trend of −0.08 °C/decade for Tmin annually, during 1955–2016 for the UIB. Seasonally, warming in Tmax is stronger in winter and spring, while the cooling in Tmin is greater in summer and autumn. Results of seasonal Tmax indicate increasing trends in winter, spring and autumn at rates of 0.38, 0.35 and 0.05 °C/decade, respectively, while decreasing in summer with −0.14 °C/decade. Moreover, seasonal Tmin results indicate increasing trends in winter and spring at rates of 0.09 and 0.08 °C/decade, respectively, while decreasing significantly in summer and autumn at rates of −0.21 and −0.22 °C/decade respectively for the whole the UIB. Precipitation exhibits an increasing trend of 2.74 mm/decade annually, while, increasing in winter, summer and autumn at rates of 1.18, 2.06 and 0.62 mm/decade respectively. The warming in Tmax and an increase in precipitation have been more distinct since the mid-1990s, while the cooling in Tmin is observed in the UIB since the mid-1980s. Warming in the middle and higher altitude (1500–2800 m and >2800 m) are much stronger, and the increase is more obvious in regions with elevation >2800 m. The wavelet analysis illustrated sporadic inter-annual covariance of seasonal Tmax, Tmin and precipitation with ENSO, NAO, IOD and PDO in the UIB. The periodicities were usually constant over short timescales and discontinuous over longer timescales. This study offers a better understanding of the local climate characteristics and provides a scientific basis for government policymakers.

2021 ◽  
Vol 21 (4) ◽  
pp. 474-479
Author(s):  
Junaid N. Khan ◽  
Asima Jillani ◽  
Syed Rouhullah Ali ◽  
Zarka Rashid ◽  
Zikra Rehman ◽  
...  

The present study aimed at modeling the impacts of climate change on precipitation and temperature and its trend in the context of changing climate in cold arid regions of north western Himalayas using multiple linear regression (MLR) model. The study was carried out in three different time slices viz., near future (2017-2045), mid future (2046-2072) and far future (2073-2099). The study includes the calibration of the observed climate data (maximum temperature, minimum temperature and precipitation) for fourteen years (2002-2015) and the outputs of downscaled scenario A2 of the Global Climate Model (GCM) data of Hadley Centre Coupled Model, (HadCM3) was used for validation, for the future. Daily climate (maximum temperature, minimum temperature and precipitation) scenarios were generated from 1961 to 2099 under A2 defined by Intergovernmental Panel on Climate Change (IPCC). During calibration, the maximum temperature, minimum temperature and precipitation showed decreasing trend. During validation, the maximum temperature showed an increasing trend in near future (2017- 2045) and decreasing trend in mid (2046-2072) and far future (2073-2099). While as, the minimum temperature and precipitation showed an increasing trend and decreasing trend respectively, in three futuristic phases. After validation, on comparison with the measured data, the variation in maximum temperature was found -2.59 oC in near future, -3.17 oC in mid future and -3.41 oC in far future. Similarly, for minimum temperature and precipitation, the variations with observed data were found 0.91 oC and -32.2 mm, respectively in near future, 2.01 oC and -34.6 mm, respectively in mid future, 4.08 oC and -3.4 mm, respectively in far future. These changes may be found due to global warming which lead to decrease in average annual precipitation and increase in average minimum temperatures causing the melting of glaciers.


2005 ◽  
Vol 18 (23) ◽  
pp. 5011-5023 ◽  
Author(s):  
L. A. Vincent ◽  
T. C. Peterson ◽  
V. R. Barros ◽  
M. B. Marino ◽  
M. Rusticucci ◽  
...  

Abstract A workshop on enhancing climate change indices in South America was held in Maceió, Brazil, in August 2004. Scientists from eight southern countries brought daily climatological data from their region for a meticulous assessment of data quality and homogeneity, and for the preparation of climate change indices that can be used for analyses of changes in climate extremes. This study presents an examination of the trends over 1960–2000 in the indices of daily temperature extremes. The results indicate no consistent changes in the indices based on daily maximum temperature while significant trends were found in the indices based on daily minimum temperature. Significant increasing trends in the percentage of warm nights and decreasing trends in the percentage of cold nights were observed at many stations. It seems that this warming is mostly due to more warm nights and fewer cold nights during the summer (December–February) and fall (March–May). The stations with significant trends appear to be located closer to the west and east coasts of South America.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhe Yuan ◽  
Yongqiang Wang ◽  
Jijun Xu ◽  
Zhiguang Wu

AbstractThe ecosystem of the Source Region of Yangtze River (SRYR) is highly susceptible to climate change. In this study, the spatial–temporal variation of NPP from 2000 to 2014 was analyzed, using outputs of Carnegie–Ames–Stanford Approach model. Then the correlation characteristics of NPP and climatic factors were evaluated. The results indicate that: (1) The average NPP in the SRYR is 100.0 gC/m2 from 2000 to 2014, and it shows an increasing trend from northwest to southeast. The responses of NPP to altitude varied among the regions with the altitude below 3500 m, between 3500 to 4500 m and above 4500 m, which could be attributed to the altitude associated variations of climatic factors and vegetation types; (2) The total NPP of SRYR increased by 0.18 TgC per year in the context of the warmer and wetter climate during 2000–2014. The NPP was significantly and positively correlated with annual temperature and precipitation at interannual time scales. Temperature in February, March, May and September make greater contribution to NPP than that in other months. And precipitation in July played a more crucial role in influencing NPP than that in other months; (3) Climatic factors caused the NPP to increase in most of the SRYR. Impacts of human activities were concentrated mainly in downstream region and is the primary reason for declines in NPP.


Author(s):  
Roshan Kumar Mehta ◽  
Shree Chandra Shah

The increase in the concentration of greenhouse gases (GHGs) in the atmosphere is widely believed to be causing climate change. It affects agriculture, forestry, human health, biodiversity, and snow cover and aquatic life. Changes in climatic factors like temperature, solar radiation and precipitation have potential to influence agrobiodiversity and its production. An average of 0.04°C/ year and 0.82 mm/year rise in annual average maximum temperature and precipitation respectively from 1975 to 2006 has been recorded in Nepal. Frequent droughts, rise in temperature, shortening of the monsoon season with high intensity rainfall, severe floods, landslides and mixed effects on agricultural biodiversity have been experienced in Nepal due to climatic changes. A survey done in the Chitwan District reveals that lowering of the groundwater table decreases production and that farmers are attracted to grow less water consuming crops during water scarce season. The groundwater table in the study area has lowered nearly one meter from that of 15 years ago as experienced by the farmers. Traditional varieties of rice have been replaced in the last 10 years by modern varieties, and by agricultural crops which demand more water for cultivation. The application of groundwater for irrigation has increased the cost of production and caused severe negative impacts on marginal crop production and agro-biodiversity. It is timely that suitable adaptive measures are identified in order to make Nepalese agriculture more resistant to the adverse impacts of climate change, especially those caused by erratic weather patterns such as the ones experienced recently.DOI: http://dx.doi.org/10.3126/hn.v11i1.7206 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.59-63


2017 ◽  
Vol 56 (9) ◽  
pp. 2393-2409 ◽  
Author(s):  
Rick Lader ◽  
John E. Walsh ◽  
Uma S. Bhatt ◽  
Peter A. Bieniek

AbstractClimate change is expected to alter the frequencies and intensities of at least some types of extreme events. Although Alaska is already experiencing an amplified response to climate change, studies of extreme event occurrences have lagged those for other regions. Forced migration due to coastal erosion, failing infrastructure on thawing permafrost, more severe wildfire seasons, altered ocean chemistry, and an ever-shrinking season for snow and ice are among the most devastating effects, many of which are related to extreme climate events. This study uses regional dynamical downscaling with the Weather Research and Forecasting (WRF) Model to investigate projected twenty-first-century changes of daily maximum temperature, minimum temperature, and precipitation over Alaska. The forcing data used for the downscaling simulations include the European Centre for Medium-Range Weather Forecasts (ECMWF) interim reanalysis (ERA-Interim; 1981–2010), Geophysical Fluid Dynamics Laboratory Climate Model, version 3 (GFDL CM3), historical (1976–2005), and GFDL CM3 representative concentration pathway 8.5 (RCP8.5; 2006–2100). Observed trends of temperature and sea ice coverage in the Arctic are large, and the present trajectory of global emissions makes a continuation of these trends plausible. The future scenario is bias adjusted using a quantile-mapping procedure. Results indicate an asymmetric warming of climate extremes; namely, cold extremes rise fastest, and the greatest changes occur in winter. Maximum 1- and 5-day precipitation amounts are projected to increase by 53% and 50%, which is larger than the corresponding increases for the contiguous United States. When compared with the historical period, the shifts in temperature and precipitation indicate unprecedented heat and rainfall across Alaska during this century.


Author(s):  
Sudeep Pokhrel ◽  
Saraswati Thapa

Water from snow-melt is crucial to provide ecosystem services in downstream of the Himalayas. To study the fate of snow hydrology, an integrated modeling system has been developed coupling Statistical Downscaling Model (SDSM) outputs with Snowmelt Runoff Model (SRM) in the Dudhkoshi Basin, Nepal. The SRM model is well-calibrated in 2011 and validated in 2012 and 2014 using MODIS satellite data. The annual average observed and simulated discharges for the calibration year are 177.89 m3 /s and 181.47 m3 /s respectively. To assess future climate projections for the periods 2020s, 2050s, and 2080s, the SDSM model is used for downscaling precipitation, maximum temperature, and minimum temperature from the Canadian GCM model (CanESM2) under three different scenarios RCP2.6, RCP4.5 and RCP8.5. All considered scenarios are significant in predicting increasing trends of maximumminimum temperature and precipitation and the storehouse of freshwater in the mountains is expected to deplete rapidly if global warming continues.


2020 ◽  
Vol 9 (2) ◽  
pp. 184-203
Author(s):  
Arshad Ashraf ◽  
Ghani Akbar

Cryosphere-fed kuhl irrigation system forms a major lifeline for agriculture and livelihood development in the Himalayan region. The system is highly vulnerable to climate change impacts like glacier retreat, glacial lake outburst floods, snow avalanches and landslides especially in the upper Indus Basin (UIB). It is necessary to conduct reassessment of climate change impacts and find coping strategies for sustainable agriculture development in this mountainous region. In the present study, risks of glacier depletion , lakes outburst flood, snow avalanche and landslide hazards impacting cryosphere-fed kuhl irrigation system in 10 river basins of the UIB of Pakistan were analyzed using multi-hazard indexing approach. High risk of glacier depletion was observed in the Astore and Swat river basins likely because of the combined effect of reduced snow precipitation and rising warm temperatures in these basins. The risk of expansion in aggregate lake area was high in the Indus sub-basin, moderate in the five basins (i.e., Hunza, Shigar, Shyok, Shingo and Astore), while it was low in the four basins (i.e., Swat, Chitral, Gilgit and Jhelum). More than 2% areas of Hunza and Shigar basins in the Karakoram range exhibited high risk of snow avalanche and landslide (SAL) hazard, while moderate SAL hazard was found in >40% areas of Chitral, Gilgit, Hunza and Shigar river basins. An effective early warning mechanism and provision of adequate resources for preparedness are essential to cope with negative impacts of climate change on irrigated agriculture in this region in future.


2021 ◽  
Author(s):  
Firdos Khan ◽  
Shaukat Ali ◽  
Christoph Mayer ◽  
Hamd Ullah ◽  
Sher Muhammad

Abstract This study investigates contemporary climate change and spatio-temporal analysis of climate extremes in Pakistan (divided into five homogenous climate zones) using observed data, categorized between 1962–1990 and 1991–2019. The results show that on the average, the changes in temperature and precipitation are significant at 5 % significance level throughout Pakistan in most of the seasons. The spatio-temporal trend analysis of consecutive dry days (CDD) shows an increasing trend during 1991–2019 except in zone 4 indicating throughout decreasing trend. PRCPTOT (annual total wet-day precipitation), R10 (number of heavy precipitation days), R20 (number of very heavy precipitation days) and R25mm (extremely heavy precipitation days) are significantly decreasing (increasing) during 1962–1990 (1991–2019) in North Pakistan. Summer days (SU25) increased across the country, except in zone 4 with a decrease. TX10p (Cool days) decreased across the country except an increase in zone 1 and zone 2 during 1962–1990. TX90p (Warm days) has an increasing trend during 1991–2019 except zone 5 and decreasing trend during 1962–1990 except zone 2 and 5. The Mann-Kendal test indicates increasing precipitation (DJF) and decreasing maximum and minimum temperature (JJA) in the Karakoram region during 1962–1990. The decadal analysis suggests decreasing precipitation during 1991–2019 and increasing temperature (maximum and minimum) during 2010–2019 which is in line with the recently confirmed slight mass loss of glaciers against Karakoram Anomaly.


2018 ◽  
Vol 229 ◽  
pp. 02017
Author(s):  
Aulia N. Khoir ◽  
R. Mamlu’atur ◽  
Agus Safril ◽  
Akhmad Fadholi

Climate change due to an increase in greenhouse gas concentrations has led to changes in extreme climate events. IPCC 2007 already predicted that average global temperatures would reach 0.74⁰ C in the last 100 years (1906-2005). A study on the temperature index trends and extreme precipitation in the period of 1986-2014 in Jakarta are represented by 5 weather stations. Daily of maximum temperature, minimum temperature, and precipitation data are calculated using RClimDex Software so that temperature and rainfall index data are obtained. The indexes are extreme climate indexes defined by ETCCDMI (Expert Team for Climate Change Detection Monitoring and Indices). The indexes consist of TN10p, TN90p, TX10p, TX90p, TNn, TNx, TXn, TXx, DTR, RX1day, RX5day, RCPTOT, CDD, CWD, and R95p. The purpose of this research is to know the change of temperature and precipitation characteristics from observation result in Jakarta by using index calculation. The results show that Jakarta has number of hot days according to the trends which are generally increasing. It can cause the temperature in Jakarta to get hotter. However, for the rainfall, the upward or downward trend is not significant, so it can be said there is no change in precipitation in Jakarta during 1986-2014.


2014 ◽  
Vol 5 (3) ◽  
pp. 427-442 ◽  
Author(s):  
S. Shrestha ◽  
N. M. M. Thin ◽  
P. Deb

This study analyzes the impacts of climate change on irrigation water requirement (IWR) and yield for rainfed rice and irrigated paddy, respectively, at Ngamoeyeik Irrigation Project in Myanmar. Climate projections from two General Circulation Models, namely ECHAM5 and HadCM3 were derived for the 2020s, 2050s, and 2080s. The climate variables were downscaled to basin level by using the Statistical DownScaling Model. The AquaCrop model was used to simulate the yield and IWR under future climate. The analysis shows a decreasing trend in maximum temperature for three scenarios and three time windows considered; however, an increasing trend is observed for minimum temperature for all cases. The analysis on precipitation also suggests that rainfall in wet season is expected to vary largely from −29 to +21.9% relative to the baseline period. A higher variation is observed for the rainfall in dry season ranging from −42% for 2080s, and +96% in the case of 2020s. A decreasing trend of IWR is observed for irrigated paddy under the three scenarios indicating that small irrigation schemes are suitable to meet the requirements. An increasing trend in the yield of rainfed paddy was estimated under climate change demonstrating increased food security in the region.


Sign in / Sign up

Export Citation Format

Share Document