scholarly journals Semilocal Convergence of the Extension of Chun’s Method

Axioms ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 161
Author(s):  
Alicia Cordero ◽  
Javier G. Maimó ◽  
Eulalia Martínez ◽  
Juan R. Torregrosa ◽  
María P. Vassileva

In this work, we use the technique of recurrence relations to prove the semilocal convergence in Banach spaces of the multidimensional extension of Chun’s iterative method. This is an iterative method of fourth order, that can be transferred to the multivariable case by using the divided difference operator. We obtain the domain of existence and uniqueness by taking a suitable starting point and imposing a Lipschitz condition to the first Fréchet derivative in the whole domain. Moreover, we apply the theoretical results obtained to a nonlinear integral equation of Hammerstein type, showing the applicability of our results.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-11
Author(s):  
Abhimanyu Kumar ◽  
Dharmendra K. Gupta ◽  
Eulalia Martínez ◽  
Sukhjit Singh

The semilocal and local convergence analyses of a two-step iterative method for nonlinear nondifferentiable operators are described in Banach spaces. The recurrence relations are derived under weaker conditions on the operator. For semilocal convergence, the domain of the parameters is obtained to ensure guaranteed convergence under suitable initial approximations. The applicability of local convergence is extended as the differentiability condition on the involved operator is avoided. The region of accessibility and a way to enlarge the convergence domain are provided. Theorems are given for the existence-uniqueness balls enclosing the unique solution. Finally, some numerical examples including nonlinear Hammerstein type integral equations are worked out to validate the theoretical results.


Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 51
Author(s):  
Alicia Cordero ◽  
Javier G. Maimó ◽  
Juan R. Torregrosa ◽  
María P. Vassileva

In this manuscript, we design two classes of parametric iterative schemes to solve nonlinear problems that do not need to evaluate Jacobian matrices and need to solve three linear systems per iteration with the same divided difference operator as the coefficient matrix. The stability performance of the classes is analyzed on a quadratic polynomial system, and it is shown that for many values of the parameter, only convergence to the roots of the problem exists. Finally, we check the performance of these methods on some test problems to confirm the theoretical results.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 776 ◽  
Author(s):  
Alicia Cordero ◽  
Cristina Jordán ◽  
Esther Sanabria ◽  
Juan R. Torregrosa

In this manuscript, a new family of Jacobian-free iterative methods for solving nonlinear systems is presented. The fourth-order convergence for all the elements of the class is established, proving, in addition, that one element of this family has order five. The proposed methods have four steps and, in all of them, the same divided difference operator appears. Numerical problems, including systems of academic interest and the system resulting from the discretization of the boundary problem described by Fisher’s equation, are shown to compare the performance of the proposed schemes with other known ones. The numerical tests are in concordance with the theoretical results.


2018 ◽  
Vol 33 (4) ◽  
pp. 308-324
Author(s):  
Dang Quang A ◽  
Truong Ha Hai ◽  
Nguyen Thanh Huong ◽  
Ngo Thi Kim Quy

In this paper we study a boundary value problem for a nonlinear biharmonic equation, which models a bending plate on nonlinear elastic foundation. We propose a new approach to existence and uniqueness  and numerical solution of the problem. It is based on the reduction of the problem to finding fixed point of a nonlinear operator for the nonlinear term. The result is that under some easily verified conditions we have established the existence and uniqueness of a solution and the convergence of an iterative method for the solution. The positivity of the solution and the monotony of iterations are also considered. Some examples demonstrate the applicability of the obtained theoretical results and the efficiency of the iterative method.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1747
Author(s):  
José Manuel Gutiérrez ◽  
Miguel Ángel Hernández-Verón ◽  
Eulalia Martínez

This work is devoted to Fredholm integral equations of second kind with non-separable kernels. Our strategy is to approximate the non-separable kernel by using an adequate Taylor’s development. Then, we adapt an already known technique used for separable kernels to our case. First, we study the local convergence of the proposed iterative scheme, so we obtain a ball of starting points around the solution. Then, we complete the theoretical study with the semilocal convergence analysis, that allow us to obtain the domain of existence for the solution in terms of the starting point. In this case, the existence of a solution is deduced. Finally, we illustrate this study with some numerical experiments.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Gunaseelan Mani ◽  
Arul Joseph Gnanaprakasam ◽  
Absar Ul Haq ◽  
Fahd Jarad ◽  
Imran Abbas Baloch

The purpose of this manuscript is to obtain some fixed point results under mild contractive conditions in fuzzy bipolar metric spaces. Our results generalize and extend many of the previous findings in the same approach. Moreover, two examples to support our theorems are obtained. Finally, to examine and strengthen the theoretical results, the existence and uniqueness of the solution to a nonlinear integral equation was studied as a kind of applications.


Author(s):  
Himanshu Kumar

AbstractThe purpose of this paper to establish the semilocal convergence analysis of three-step Kurchatov method under weaker conditions in Banach spaces. We construct the recurrence relations under the assumption that involved first-order divided difference operators satisfy the $$\omega $$ ω condition. Theorems are given for the existence-uniqueness balls enclosing the unique solution. The application of the iterative method is shown by solving nonlinear system of equations and nonlinear Hammerstein-type integral equations. It illustrates the theoretical development of this study.


2010 ◽  
Vol 07 (02) ◽  
pp. 215-228 ◽  
Author(s):  
S. K. PARHI ◽  
D. K. GUPTA

The aim of this paper is to establish the semilocal convergence of a third order Stirling–like method employed for solving nonlinear equations in Banach spaces by using the first Fréchet derivative, which satisfies the Lipschitz continuity condition. This makes it possible to avoid the evaluation of higher order Fréchet derivatives which are computationally difficult at times or may not even exist. The recurrence relations are used for convergence analysis. A convergence theorem is given for deriving error bounds and the domains of existence and uniqueness of solutions. The R order of the method is also established to be equal to 3. Finally, two numerical examples are worked out, and the results obtained are compared with the existing results. It is observed that our convergence analysis is more effective.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 384
Author(s):  
Sukhjit Singh ◽  
Eulalia Martínez ◽  
Abhimanyu Kumar ◽  
D. K. Gupta

In this work, we performed an study about the domain of existence and uniqueness for an efficient fifth order iterative method for solving nonlinear problems treated in their infinite dimensional form. The hypotheses for the operator and starting guess are weaker than in the previous studies. We assume omega continuity condition on second order Fréchet derivative. This fact it is motivated by showing different problems where the nonlinear operators that define the equation do not verify Lipschitz and Hölder condition; however, these operators verify the omega condition established. Then, the semilocal convergence balls are obtained and the R-order of convergence and error bounds can be obtained by following thee main theorem. Finally, we perform a numerical experience by solving a nonlinear Hammerstein integral equations in order to show the applicability of the theoretical results by obtaining the existence and uniqueness balls.


Sign in / Sign up

Export Citation Format

Share Document