scholarly journals Natural Biomaterials and Their Use as Bioinks for Printing Tissues

2021 ◽  
Vol 8 (2) ◽  
pp. 27
Author(s):  
Claire Benwood ◽  
Josie Chrenek ◽  
Rebecca L. Kirsch ◽  
Nadia Z. Masri ◽  
Hannah Richards ◽  
...  

The most prevalent form of bioprinting—extrusion bioprinting—can generate structures from a diverse range of materials and viscosities. It can create personalized tissues that aid in drug testing and cancer research when used in combination with natural bioinks. This paper reviews natural bioinks and their properties and functions in hard and soft tissue engineering applications. It discusses agarose, alginate, cellulose, chitosan, collagen, decellularized extracellular matrix, dextran, fibrin, gelatin, gellan gum, hyaluronic acid, Matrigel, and silk. Multi-component bioinks are considered as a way to address the shortfalls of individual biomaterials. The mechanical, rheological, and cross-linking properties along with the cytocompatibility, cell viability, and printability of the bioinks are detailed as well. Future avenues for research into natural bioinks are then presented.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Dongyan Huang ◽  
Rongguang Wang ◽  
Shiming Yang

Stem cells based tissue engineering has been one of the potential promising therapies in the research on the repair of tissue diseases including the vocal fold. Decellularized extracellular matrix (DCM) as a promising scaffold has be used widely in tissue engineering; however, it remained to be an important issue in vocal fold regeneration. Here, we applied the hydrogels (hyaluronic acid [HA], HA-collagen [HA-Col], and HA-DCM) to determine the effects of hydrogel on the growth and differentiation of human adipose-derived stem cells (hADSCs) into superficial lamina propria fibroblasts. hADSCs were isolated and characterized by fluorescence-activated cell sorting. The results indicated that HA-DCM hydrogel enhanced cell proliferation and prolonged cell morphology significantly compared to HA and HA-Col hydrogel. Importantly, the differentiation of hADSCs into fibroblasts was also promoted by cogels of HA-Col and HA-DCM significantly. The differentiation of hADSCs towards superficial lamina propria fibroblasts was accelerated by the secretion of HGF, IL-8, and VEGF, the decorin and elastin expression, and the synthesis of chondroitin sulfate significantly. Therefore, the cogel of HA-DCM hydrogel was shown to be outstanding in apparent stimulation of hADSCs proliferation and differentiation to vocal fold fibroblasts through secretion of important growth factors and synthesis of extracellular matrix.


Author(s):  
Cong Wang ◽  
Hongye Hao ◽  
Jing Wang ◽  
Yunfan Xue ◽  
Jun-jie Huang ◽  
...  

As a component of extracellular matrix (ECM), hyaluronic acid (HA) has plenty of applications in biomedical field such as tissue engineering. Due to its non-adhesive nature, HA requires further functional...


Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3522
Author(s):  
Su Jeong Lee ◽  
Jun Hee Lee ◽  
Jisun Park ◽  
Wan Doo Kim ◽  
Su A Park

Recently, many research groups have investigated three-dimensional (3D) bioprinting techniques for tissue engineering and regenerative medicine. The bio-ink used in 3D bioprinting is typically a combination of synthetic and natural materials. In this study, we prepared bio-ink containing porcine skin powder (PSP) to determine rheological properties, biocompatibility, and extracellular matrix (ECM) formation in cells in PSP-ink after 3D printing. PSP was extracted without cells by mechanical, enzymatic, and chemical treatments of porcine dermis tissue. Our developed PSP-containing bio-ink showed enhanced printability and biocompatibility. To identify whether the bio-ink was printable, the viscosity of bio-ink and alginate hydrogel was analyzed with different concentration of PSP. As the PSP concentration increased, viscosity also increased. To assess the biocompatibility of the PSP-containing bio-ink, cells mixed with bio-ink printed structures were measured using a live/dead assay and WST-1 assay. Nearly no dead cells were observed in the structure containing 10 mg/mL PSP-ink, indicating that the amounts of PSP-ink used were nontoxic. In conclusion, the proposed skin dermis decellularized bio-ink is a candidate for 3D bioprinting.


2014 ◽  
Vol 10 (1) ◽  
pp. 214-223 ◽  
Author(s):  
Peter A. Levett ◽  
Ferry P.W. Melchels ◽  
Karsten Schrobback ◽  
Dietmar W. Hutmacher ◽  
Jos Malda ◽  
...  

2007 ◽  
Vol 19 (02) ◽  
pp. 91-97
Author(s):  
Bo-Yi Yu ◽  
Po-Ya Chen ◽  
Yi-Ming Sun ◽  
Tai-Horng Young

Polyhydroxyalkanoates (PHAs) is a newer family of biomaterials for tissue engineering applications. The objective of this study is to investigate the behaviors of human Schwann cells-like (hSCs-like) on various PHA films. The surface characteristics of PHA films were varied by the content of 3-hydroxyvalerate (HV) or 3-hydroxyhexanoate (HHx) and by the film preparation methods such as compression-molding and solvent-casting. Hyaluronic acid (HA) and poly(L-lysine) (PLL) were further applied on to improve the growth of hSCs-like on PHA membranes. The hSCs-like isolated from human body (MATERIALS AND METHODS) would have strong metabolic activities and produce many extracellular matrix (ECM). When HV content increased, there was a reduction in the crystallinity and the hydrophoicity of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) membranes. Despite that these different surface characteristics did not show significant effect on the metabolic activities of hSCs-like, these would affect adhering HA. Hyaluronic acid (HA)-coated PHA membranes could improve the metabolic activities and decrease the death ratio of hSCs-like. However, the condition of PLL coating has no obvious influence on the activities of hSCs.


Sign in / Sign up

Export Citation Format

Share Document