scholarly journals Fabrication of 3D Printing Scaffold with Porcine Skin Decellularized Bio-Ink for Soft Tissue Engineering

Materials ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 3522
Author(s):  
Su Jeong Lee ◽  
Jun Hee Lee ◽  
Jisun Park ◽  
Wan Doo Kim ◽  
Su A Park

Recently, many research groups have investigated three-dimensional (3D) bioprinting techniques for tissue engineering and regenerative medicine. The bio-ink used in 3D bioprinting is typically a combination of synthetic and natural materials. In this study, we prepared bio-ink containing porcine skin powder (PSP) to determine rheological properties, biocompatibility, and extracellular matrix (ECM) formation in cells in PSP-ink after 3D printing. PSP was extracted without cells by mechanical, enzymatic, and chemical treatments of porcine dermis tissue. Our developed PSP-containing bio-ink showed enhanced printability and biocompatibility. To identify whether the bio-ink was printable, the viscosity of bio-ink and alginate hydrogel was analyzed with different concentration of PSP. As the PSP concentration increased, viscosity also increased. To assess the biocompatibility of the PSP-containing bio-ink, cells mixed with bio-ink printed structures were measured using a live/dead assay and WST-1 assay. Nearly no dead cells were observed in the structure containing 10 mg/mL PSP-ink, indicating that the amounts of PSP-ink used were nontoxic. In conclusion, the proposed skin dermis decellularized bio-ink is a candidate for 3D bioprinting.

2018 ◽  
Vol 5 (1) ◽  
Author(s):  
Nicanor Moldovan ◽  
Leni Maldovan ◽  
Michael Raghunath

The overarching principle of three-dimensional (3D) bioprinting is the placing of cells or cell clusters in the 3D space to generate a cohesive tissue microarchitecture that comes close to in vivo characteristics. To achieve this goal, several technical solutions are available, generating considerable combinatorial bandwidth: (i) Support structures are generated first, and cells are seeded subsequently; (ii) alternatively, cells are delivered in a printing medium, so-called “bioink,” that contains them during the printing process and ensures shape fidelity of the generated structure; and (iii) a “scaffold-free” version of bioprinting, where only cells are used and the extracellular matrix is produced by the cells themselves, also recently entered a phase of accelerated development and successful applications. However, the scaffold-free approaches may still benefit from secondary incorporation of scaffolding materials, thus expanding their versatility. Reversibly, the bioink-based bioprinting could also be improved by adopting some of the principles and practices of scaffold-free biofabrication. Collectively, we anticipate that combinations of these complementary methods in a “hybrid” approach, rather than their development in separate technological niches, will largely increase their efficiency and applicability in tissue engineering.


2019 ◽  
Vol 20 (18) ◽  
pp. 4628 ◽  
Author(s):  
Kevin Dzobo ◽  
Keolebogile Shirley Caroline M. Motaung ◽  
Adetola Adesida

The promise of regenerative medicine and tissue engineering is founded on the ability to regenerate diseased or damaged tissues and organs into functional tissues and organs or the creation of new tissues and organs altogether. In theory, damaged and diseased tissues and organs can be regenerated or created using different configurations and combinations of extracellular matrix (ECM), cells, and inductive biomolecules. Regenerative medicine and tissue engineering can allow the improvement of patients’ quality of life through availing novel treatment options. The coupling of regenerative medicine and tissue engineering with 3D printing, big data, and computational algorithms is revolutionizing the treatment of patients in a huge way. 3D bioprinting allows the proper placement of cells and ECMs, allowing the recapitulation of native microenvironments of tissues and organs. 3D bioprinting utilizes different bioinks made up of different formulations of ECM/biomaterials, biomolecules, and even cells. The choice of the bioink used during 3D bioprinting is very important as properties such as printability, compatibility, and physical strength influence the final construct printed. The extracellular matrix (ECM) provides both physical and mechanical microenvironment needed by cells to survive and proliferate. Decellularized ECM bioink contains biochemical cues from the original native ECM and also the right proportions of ECM proteins. Different techniques and characterization methods are used to derive bioinks from several tissues and organs and to evaluate their quality. This review discusses the uses of decellularized ECM bioinks and argues that they represent the most biomimetic bioinks available. In addition, we briefly discuss some polymer-based bioinks utilized in 3D bioprinting.


2020 ◽  
Vol 1 (02) ◽  
pp. 72-78
Author(s):  
Mohamed Mahmoud Abdul-Monem

AbstractBiocompatibility of materials used in dental and biomaterials applications is very important and depends on the components of these materials. Photopolymerized materials for dental and biomaterials applications have been progressively used since the 1970s. One of the crucial components in these materials is the photoinitiator (PI) that initiates the polymerization reaction. Synthetic PIs are the most commonly used types, but owing to their drawbacks such as cytotoxicity, insolubility in water, and high cost, research on naturally derived (bio-sourced) PIs is growing, to find an alternative to these synthetic types, especially in the growing field of three-dimensional (3D) printing and bioprinting of biomaterials for tissue engineering applications. Naturally derived PIs are biocompatible, highly water-soluble, and abundant. Naturally derived PIs have been used to prepare experimental dentine bonding agents, dentine primers, photo-crosslinked hydrogels for tissue engineering applications, antibacterial coatings, guided tissue regeneration membranes, and 3D printed biomaterials. An electronic search was done using MEDLINE/PubMed and Scopus databases using the keywords naturally derived, bio-sourced, PIs, dental, biomaterials, 3D printing, and 3D bioprinting, to review potential naturally derived PIs for dental and biomaterials applications. There are a variety of naturally derived PIs with various colors and absorption spectra to choose from, according to the intended application. Most of naturally derived PIs can be used with modern conventional dental light curing units, making them applicable for experimental studies for potential dental and biomaterials applications. Due to their biocompatibility and availability it is expected that in the upcoming years, research on naturally derived PIs and their dental and biomaterials applications will increase especially in the growing field of 3D bioprinting in which cell viability is essential; thus this review was done.


Author(s):  
Kevin Dzobo ◽  
Shirley Motaung ◽  
Adetola Adesida

Abstract: The promise of regenerative medicine and tissue engineering is founded on the ability to regenerate diseased or damaged tissues and organs into functional tissues and organs or the creation of new tissues and organs altogether. In theory, all damaged and diseased tissues and organs can be regenerated or created using different configurations and combinations of extracellular matrix, cells and inductive biomolecules. Currently, regenerative medicine and tissue engineering can allow the improvement of patients’ quality of life through availing novel treatment options. Tissues and organs have a specific ECM, with specific proteins and factors released by cells residing within the local microenvironment. The coupling of regenerative medicine and tissue engineering field with 3D printing is revolutionizing the treatment of patients in a huge way. 3D bioprinting allows the proper placement of cells and ECMs, allowing the recapitulation of native microenvironments of tissues and organs. 3D bioprinting utilizes different bioinks made up of different formulations of ECM/biomaterials, biomolecules and even cells. The choice of the bioink used during 3D bioprinting is very important as properties such as printability, compatibility and physical strength influence the final construct printed. The extracellular matrix (ECM) provides both physical and mechanical microenvironment needed by cells to survive and proliferate. Decellularized ECM bioink contains biochemical cues from the original native ECM and also the right proportions of ECM proteins. Different techniques and characterization methods are used to derive bioinks from several tissues and organs and to evaluate their quality. This review discusses the uses of decellularized ECM bioinks and argues that they represent the most biomimetic bioinks available. In addition, we briefly discuss some polymer-based bioinks utilized in 3D bioprinting.


Micromachines ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 366 ◽  
Author(s):  
Vahid Serpooshan ◽  
Murat Guvendiren

Three-dimensional (3D) bioprinting uses additive manufacturing techniques to fabricate 3D structures consisting of heterogenous selections of living cells, biomaterials, and active biomolecules [...]


2021 ◽  
Author(s):  
Julio Aleman ◽  
Hemamylammal Sivakumar ◽  
Thomas DePalma ◽  
Yu Zhou ◽  
Andrea Mazzocchi ◽  
...  

The field of three-dimensional (3D) bioprinting has advanced rapidly in recent years. Significant reduction in the costs associated with obtaining functional 3D bioprinting hardware platforms is both a cause and a result of these advances. As such, there are more laboratories than ever integrating bioprinting methodologies into their research. However, there is a lack of standards in the field of biofabrication governing any requirements or characteristics to support cross-compatibility with biomaterial bioinks, hardware, and different tissue types. Here we describe a modular extracellular matrix (ECM) inspired bioink comprised of collagen and hyaluronic acid base components that: 1) employ reversible internal hydrogen bonding forces to generate thixotropic materials that dynamically reduce their elastic moduli in response to increased shear stress, thus enabling increased compatibility with printing hardware; and 2) modular addons in the form of chemically-modified fibronectin and laminin that when covalently bound within the bioink support a variety of tissue types, including liver, neural, muscle, pancreatic islet, and adipose tissue. These features aim to accelerate the deployment of such bioinks for tissue engineering of functional constructs in the hands of various end users.


Cancers ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1629
Author(s):  
Colin H. Quinn ◽  
Andee M. Beierle ◽  
Elizabeth A. Beierle

In the quest to advance neuroblastoma therapeutics, there is a need to have a deeper understanding of the tumor microenvironment (TME). From extracellular matrix proteins to tumor associated macrophages, the TME is a robust and diverse network functioning in symbiosis with the solid tumor. Herein, we review the major components of the TME including the extracellular matrix, cytokines, immune cells, and vasculature that support a more aggressive neuroblastoma phenotype and encumber current therapeutic interventions. Contemporary treatments for neuroblastoma are the result of traditional two-dimensional culture studies and in vivo models that have been translated to clinical trials. These pre-clinical studies are costly, time consuming, and neglect the study of cofounding factors such as the contributions of the TME. Three-dimensional (3D) bioprinting has become a novel approach to studying adult cancers and is just now incorporating portions of the TME and advancing to study pediatric solid. We review the methods of 3D bioprinting, how researchers have included TME pieces into the prints, and highlight present studies using neuroblastoma. Ultimately, incorporating the elements of the TME that affect neuroblastoma responses to therapy will improve the development of innovative and novel treatments. The use of 3D bioprinting to achieve this aim will prove useful in developing optimal therapies for children with neuroblastoma.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 353
Author(s):  
Yanting Han ◽  
Qianqian Wei ◽  
Pengbo Chang ◽  
Kehui Hu ◽  
Oseweuba Valentine Okoro ◽  
...  

Hydroxyapatite (HA) and HA-based nanocomposites have been recognized as ideal biomaterials in hard tissue engineering because of their compositional similarity to bioapatite. However, the traditional HA-based nanocomposites fabrication techniques still limit the utilization of HA in bone, cartilage, dental, applications, and other fields. In recent years, three-dimensional (3D) printing has been shown to provide a fast, precise, controllable, and scalable fabrication approach for the synthesis of HA-based scaffolds. This review therefore explores available 3D printing technologies for the preparation of porous HA-based nanocomposites. In the present review, different 3D printed HA-based scaffolds composited with natural polymers and/or synthetic polymers are discussed. Furthermore, the desired properties of HA-based composites via 3D printing such as porosity, mechanical properties, biodegradability, and antibacterial properties are extensively explored. Lastly, the applications and the next generation of HA-based nanocomposites for tissue engineering are discussed.


2020 ◽  
Vol 6 (1) ◽  
pp. 57-69
Author(s):  
Amirhosein Fathi ◽  
Farzad Kermani ◽  
Aliasghar Behnamghader ◽  
Sara Banijamali ◽  
Masoud Mozafari ◽  
...  

AbstractOver the last years, three-dimensional (3D) printing has been successfully applied to produce suitable substitutes for treating bone defects. In this work, 3D printed composite scaffolds of polycaprolactone (PCL) and strontium (Sr)- and cobalt (Co)-doped multi-component melt-derived bioactive glasses (BGs) were prepared for bone tissue engineering strategies. For this purpose, 30% of as-prepared BG particles (size <38 μm) were incorporated into PCL, and then the obtained composite mix was introduced into a 3D printing machine to fabricate layer-by-layer porous structures with the size of 12 × 12 × 2 mm3.The scaffolds were fully characterized through a series of physico-chemical and biological assays. Adding the BGs to PCL led to an improvement in the compressive strength of the fabricated scaffolds and increased their hydrophilicity. Furthermore, the PCL/BG scaffolds showed apatite-forming ability (i.e., bioactivity behavior) after being immersed in simulated body fluid (SBF). The in vitro cellular examinations revealed the cytocompatibility of the scaffolds and confirmed them as suitable substrates for the adhesion and proliferation of MG-63 osteosarcoma cells. In conclusion, 3D printed composite scaffolds made of PCL and Sr- and Co-doped BGs might be potentially-beneficial bone replacements, and the achieved results motivate further research on these materials.


Author(s):  
Ana A. Aldana ◽  
Marina Uhart ◽  
Gustavo A. Abraham ◽  
Diego M. Bustos ◽  
Aldo R. Boccaccini

Abstract3D printing has emerged as vanguard technique of biofabrication to assemble cells, biomaterials and biomolecules in a spatially controlled manner to reproduce native tissues. In this work, gelatin methacrylate (GelMA)/alginate hydrogel scaffolds were obtained by 3D printing and 14-3-3ε protein was encapsulated in the hydrogel to induce osteogenic differentiation of human adipose-derived mesenchymal stem cells (hASC). GelMA/alginate-based grid-like structures were printed and remained stable upon photo-crosslinking. The viscosity of alginate allowed to control the pore size and strand width. A higher viscosity of hydrogel ink enhanced the printing accuracy. Protein-loaded GelMA/alginate-based hydrogel showed a clear induction of the osteogenic differentiation of hASC cells. The results are relevant for future developments of GelMA/alginate for bone tissue engineering given the positive effect of 14-3-3ε protein on both cell adhesion and proliferation.


Sign in / Sign up

Export Citation Format

Share Document