scholarly journals Thermococcus bergensis sp. nov., a Novel Hyperthermophilic Starch-Degrading Archaeon

Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 387
Author(s):  
Nils-Kåre Birkeland ◽  
Boyke Bunk ◽  
Cathrin Spröer ◽  
Hans-Peter Klenk ◽  
Peter Schönheit

A novel hyperthermophilic archaeon, termed strain T7324T, was isolated from a mixed sulfate-reducing consortium recovered from hot water produced from a deep North Sea oil reservoir. The isolate is a strict anaerobic chemo-organotroph able to utilize yeast extract or starch as a carbon source. The genes for a number of sugar degradation enzymes and glutamate dehydrogenase previously attributed to the sulfate reducing strain of the consortium (Archaeoglobus fulgidus strain 7324) were identified in the nearly completed genome sequence. Sequence analysis of the 16S rRNA gene placed the strain in the Thermococcus genus, but with an average nucleotide identity that is less than 90% to its closest relatives. Phylogenomic treeing reconstructions placed the strain on a distinct lineage clearly separated from other Thermococcus spp. The results indicate that the strain T7324T represents a novel species, for which the name Thermococcus bergensis sp. nov. is proposed. The type strain is T7324T (=DSM 27149T = KCTC 15808T).

2007 ◽  
Vol 57 (12) ◽  
pp. 2840-2843 ◽  
Author(s):  
Olga I. Nedashkovskaya ◽  
Marc Vancanneyt ◽  
Paul De Vos ◽  
Seung Bum Kim ◽  
Myung Sook Lee ◽  
...  

A novel gliding, heterotrophic, Gram-negative, yellow–orange-pigmented, aerobic, oxidase- and catalase-positive bacterium, designated strain KMM 6151T, was isolated from the Pacific red alga Polysiphonia japonica. Analysis of the 16S rRNA gene sequence of the strain revealed that it formed a distinct lineage within the genus Maribacter, family Flavobacteriaceae, with sequence similarities in the range 94.6–96.9 %. On the basis of phenotypic, genotypic and phylogenetic data, strain KMM 6151T represents a novel species of the genus Maribacter, for which the name Maribacter polysiphoniae sp. nov. is proposed. The type strain is KMM 6151T (=KCTC 22021T=LMG 23671T).


Author(s):  
Cristiana Cravo-Laureau ◽  
Robert Matheron ◽  
Jean-Luc Cayol ◽  
Catherine Joulian ◽  
Agnès Hirschler-Réa

A novel marine sulfate-reducing bacterium, strain CV2803T, which is able to oxidize aliphatic hydrocarbons, was isolated from a hydrocarbon-polluted marine sediment (Gulf of Fos, France). The cells were rod-shaped and slightly curved, measuring 0·6×2·2–5·5 μm. Strain CV2803T stained Gram-negative and was non-motile and non-spore-forming. Optimum growth occurred in the presence of 24 g NaCl l−1, at pH 7·5 and at a temperature between 28 and 35 °C. Strain CV2803T oxidized alkanes (from C13 to C18) and alkenes (from C7 to C23). The DNA G+C content was 41·4 mol%. Comparative sequence analyses of the 16S rRNA gene and dissimilatory sulfite reductase (dsrAB) gene and those of other sulfate-reducing bacteria, together with its phenotypic properties, indicated that strain CV2803T was a member of a distinct cluster that contained unnamed species. Therefore, strain CV2803T (=DSM 15576T=ATCC BAA-743T) is proposed as the type strain of a novel species in a new genus, Desulfatibacillum aliphaticivorans gen. nov., sp. nov.


2004 ◽  
Vol 54 (6) ◽  
pp. 2053-2056 ◽  
Author(s):  
Tomohiko Tamura ◽  
Takeshi Sakane

An actinomycete that developed sporangia containing four spores in a single row at the ends of short sporangiophores on branched aerial hyphae was isolated from subtropical forest soil. The isolate contained menaquinone MK-9(H4), glutamic acid, alanine and meso-diaminopimelic acid as cell-wall amino acids and madurose in the whole-cell hydrolysate. The 16S rRNA gene sequence indicated that the isolate formed a monophyletic cluster with Planotetraspora mira. On the basis of morphological and chemotaxonomic characteristics, phylogenetic analysis and DNA–DNA relatedness data, a novel species of the genus Planotetraspora is proposed, Planotetraspora silvatica sp. nov. (type strain, TT 00-51T=NBRC 100141T=DSM 44746T).


2011 ◽  
Vol 61 (9) ◽  
pp. 2167-2172 ◽  
Author(s):  
Qi-Yong Tang ◽  
Na Yang ◽  
Jian Wang ◽  
Yu-Qing Xie ◽  
Biao Ren ◽  
...  

A Gram-stain-positive, endospore-forming, rod-shaped bacterium, designated XJ259T, was isolated from a cold spring sample from Xinjiang Uyghur Autonomous Region, China. The isolate grew optimally at 20–30 °C and pH 7.3–7.8. Comparative analysis of the 16S rRNA gene sequence showed that isolate XJ259T belonged phylogenetically to the genus Paenibacillus, and was most closely related to Paenibacillus xinjiangensis B538T (with 96.6 % sequence similarity), Paenibacillus glycanilyticus DS-1T (96.3 %) and Paenibacillus castaneae Ch-32T (96.1 %), sharing less than 96.0 % sequence similarity with all other members of the genus Paenibacillus. Chemotaxonomic analysis revealing menaquinone-7 (MK-7) as the major isoprenoid quinone, diphosphatidylglycerol, phosphatidylethanolamine and two unknown phosphoglycolipids as the major cellular polar lipids, a DNA G+C content of 47.0 mol%, and anteiso-C15 : 0 and C16 : 0 as the major fatty acids supported affiliation of the new isolate to the genus Paenibacillus. Based on these data, isolate XJ259T is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus algorifonticola sp. nov. is proposed. The type strain is XJ259T ( = CGMCC 1.10223T  = JCM 16598T).


2021 ◽  
Author(s):  
Xiu-Ya Ping ◽  
Kai Wang ◽  
Jin-Yu Zhang ◽  
Shu-Xin Wang ◽  
Zong-Jun Du ◽  
...  

Abstract A Gram-stain-negative, gliding-motile, positive for catalase, facultative anaerobic, designated strain XSD401T, was isolated from the red algae of Xiaoshi Island, Shandong Province, China. Growth occurred at 20–37 °C (optimum, 33 °C), pH 5.5–9.5 (optimum, pH 6.5–7.5), and with 0.5–5% (w/v) NaCl (optimum, 3%). The main fatty acids are iso-C15:0, iso-C15:1 G, iso-C17:0 3-OH, iso-C15:0 3-OH, C16:0. Phosphatidylethanolamine (PE), three unidentified aminolipids (AL1, AL2, AL3) and one unidentified lipid (L) were the major polar lipids. The G+C content of the genomic DNA was 33.9 mol%. Strain XSD401T had the highest sequence similarity (96.88%) to the 16S rRNA gene of Psychroserpens damuponensis KCTC 23539T. The similarities with Psychroserpens burtonensis DSM 12212T was 96.31%. The dDDH values between strain XSD401T and P. damuponensis KCTC 23539T, P. burtonensis DSM 12212T, were 20.40% and 20.30%, respectively. The average nucleotide identity (ANI) values between strain XSD401T and P. damuponensis KCTC 23539T, P. burtonensis DSM 12212T were 76.91%, 76.88%, respectively. The differences in morphology, physiology and genotype from the previously described taxa support the classification of strain XSD401T as a representative of a novel species of the genus Psychroserpens, for which the name Psychroserpens luteus sp. nov. is proposed. The type strain is XSD401T (= MCCC 1H00396T = KCTC 72684T = JCM 33931T).


2015 ◽  
Vol 65 (Pt_12) ◽  
pp. 4358-4362 ◽  
Author(s):  
Yochan Joung ◽  
Mi-ae Seo ◽  
Heeyoung Kang ◽  
Haneul Kim ◽  
Tae-seok Ahn ◽  
...  

A Gram-staining-negative, non-gliding, orange-pigmented bacterial strain, designated HMF2925T, was isolated from fresh water in Korea. The phylogenetic tree based on 16S rRNA gene sequences showed that strain HMF2925T formed a distinct lineage within the genus Emticicia. Strain HMF2925T was closely related to Emticicia oligotrophica DSM 17448T (95.5 %) and Emticicia ginsengisoli Gsoil 085T (94.1 %). The major fatty acids of strain HMF2925T were summed feature 3 (C16 : 1ω6c and/or C16 : 1ω7c), iso-C15 : 0, C16 : 1ω5c and C16 : 0.The major polar lipids of strain HMF2925T were phosphatidylethanolamine, phosphatidylinositol, diphosphatidylglycerol, phosphatidylglycerol, an unidentified glycolipid, two unidentified amino lipids and three unidentified polar lipids. The DNA G+C content of strain HMF2925T was 36.5 mol%. On the basis of the evidence presented in this study, strain HMF2925T represents a novel species of the genus Emticicia, for which the name Emticicia aquatica sp. nov. is proposed. The type strain is HMF2925T ( = KCTC 42574T = CECT 8858T).


2015 ◽  
Vol 65 (Pt_10) ◽  
pp. 3333-3338 ◽  
Author(s):  
Wei Fang ◽  
Yong Li ◽  
Han Xue ◽  
Guozhong Tian ◽  
Laifa Wang ◽  
...  

Three novel endophytic strains, designated 17B10-2-12T, 26C10-4-4 and D13-10-4-9, were isolated from the bark of Populus euramericana in Heze, Shandong Province, China. They were Gram-reaction-negative, aerobic, non-motile, short-rod-shaped, oxidase-positive and catalase-negative. A phylogenetic analysis of the 16S rRNA gene showed that the three novel strains clustered with members of the family Comamonadaceae and formed a distinct branch. The isolates shared 100 % similarities among themselves and had the highest sequence similarity with Xenophilus azovorans DSM 13620T (95.2 %) and Xenophilus arseniciresistens YW8T (95.0 %), and less than 95.0 % sequence similarities with members of other species. Their major fatty acids were C16 : 0, C17 : 0 cyclo, C18 : 1ω7c and C16 : 1ω7c/C16 : 1ω6c. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and three unknown aminophospholipids. The predominant quinone was ubiquinone-8 (Q-8). The DNA G+C content was 69.5–70.0 mol%. Based on data from a polyphasic taxonomy study, the three strains represent a novel species of a novel genus of the family Comamonadaceae, for which the name Corticibacter populi gen. nov., sp. nov. is proposed. The type strain is 17B10-2-12T ( = CFCC 12099T = KCTC 42091T).


2020 ◽  
Vol 70 (3) ◽  
pp. 1868-1875 ◽  
Author(s):  
Shan-Hui Li ◽  
Jaeho Song ◽  
Yeonjung Lim ◽  
Yochan Joung ◽  
Ilnam Kang ◽  
...  

A Gram-stain-negative, rod-shaped, aerobic, non-flagellated, chemoheterotrophic bacterium, designated IMCC14385T, was isolated from surface seawater of the East Sea, Republic of Korea. The 16S rRNA gene sequence analysis indicated that IMCC14385T represented a member of the genus Halioglobus sharing 94.6–97.8 % similarities with species of the genus. Whole-genome sequencing of IMCC14385T revealed a genome size of 4.3 Mbp and DNA G+C content of 56.7 mol%. The genome of IMCC14385T shared an average nucleotide identity of 76.6 % and digital DNA–DNA hybridization value of 21.6 % with the genome of Halioglobus japonicus KCTC 23429T. The genome encoded the complete poly-β-hydroxybutyrate biosynthesis pathway. The strain contained summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c), summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and C17 : 1 ω8c as the predominant cellular fatty acids as well as ubiquinone-8 (Q-8) as the respiratory quinone. The polar lipids detected in the strain were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, five unidentified phospholipids, an unidentified aminolipid, an unidentified aminophospholipid and four unidentified lipids. On the basis of taxonomic data obtained in this study, it is suggested that IMCC14385T represents a novel species of the genus Halioglobus , for which the name Halioglobus maricola sp. nov. is proposed. The type strain is IMCC14385T (=KCTC 72520T=NBRC 114072T).


2005 ◽  
Vol 55 (6) ◽  
pp. 2519-2523 ◽  
Author(s):  
Yoon-Dong Park ◽  
Keun Sik Baik ◽  
Hana Yi ◽  
Kyung Sook Bae ◽  
Jongsik Chun

A Gram-negative, motile, strictly aerobic, violet-pigment-producing bacterium, designated strain FR1199T, was isolated from tidal flat sediment of Byunsan, South Korea. Phylogenetic analysis of the 16S rRNA gene sequence revealed that strain FR1199T represents a distinct line of descent within the genus Pseudoalteromonas. The phenotypic features of strain FR1199T were similar to those of Pseudoalteromonas phenolica and Pseudoalteromonas luteoviolacea, but several physiological and chemotaxonomical properties readily distinguished strain FR1199T from these species. Major fatty acids were straight-chain saturated (C16 : 0) and monounsaturated C18 : 1 ω7c fatty acids. The DNA G+C content was 39 mol%. On the basis of polyphasic evidence, it is concluded that the isolate represents a novel species within the genus Pseudoalteromonas, for which the name Pseudoalteromonas byunsanensis sp. nov. is proposed. The type strain is FR1199T (=JCM 12483T=KCTC 12274T).


2007 ◽  
Vol 189 (24) ◽  
pp. 8901-8913 ◽  
Author(s):  
Antje Labes ◽  
Peter Schönheit

ABSTRACT The hyperthermophilic archaeon Archaeoglobus fulgidus strain 7324 has been shown to grow on starch and sulfate and thus represents the first sulfate reducer able to degrade polymeric sugars. The enzymes involved in starch degradation to glucose 6-phosphate were studied. In extracts of starch-grown cells the activities of the classical starch degradation enzymes, α-amylase and amylopullulanase, could not be detected. Instead, evidence is presented here that A. fulgidus utilizes an unusual pathway of starch degradation involving cyclodextrins as intermediates. The pathway comprises the combined action of an extracellular cyclodextrin glucanotransferase (CGTase) converting starch to cyclodextrins and the intracellular conversion of cyclodextrins to glucose 6-phosphate via cyclodextrinase (CDase), maltodextrin phosphorylase (Mal-P), and phosphoglucomutase (PGM). These enzymes, which are all induced after growth on starch, were characterized. CGTase catalyzed the conversion of starch to mainly β-cyclodextrin. The gene encoding CGTase was cloned and sequenced and showed highest similarity to a glucanotransferase from Thermococcus litoralis. After transport of the cyclodextrins into the cell by a transport system to be defined, these molecules are linearized via a CDase, catalyzing exclusively the ring opening of the cyclodextrins to the respective maltooligodextrins. These are degraded by a Mal-P to glucose 1-phosphate. Finally, PGM catalyzes the conversion of glucose 1-phosphate to glucose 6-phosphate, which is further degraded to pyruvate via the modified Embden-Meyerhof pathway.


Sign in / Sign up

Export Citation Format

Share Document