scholarly journals Effect of Electrical Stimulation on Diabetic Human Skin Fibroblast Growth and the Secretion of Cytokines and Growth Factors Involved in Wound Healing

Biology ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 641
Author(s):  
Atieh Abedin-Do ◽  
Ze Zhang ◽  
Yvan Douville ◽  
Mireille Méthot ◽  
Mahmoud Rouabhia

Diabetic foot ulcers are indicative of an impaired wound healing process. This delay may be resolved through electrical stimulation (ES). The goal of the present study was to evaluate the effect of ES on diabetic fibroblast adhesion and growth, and the secretion of cytokines and growth factors. Diabetic human skin fibroblasts (DHSF) were exposed to various intensities of direct current ES (100, 80, 40 and 20 mV/mm). The effect of ES on fibroblast adhesion and growth was evaluated using Hoechst staining, MTT and trypan blue exclusion assays. The secretion of cytokine and growth factor was assessed by cytokine array and ELISA assay. The long-term effects of ES on DHSF shape and growth were determined by optical microscopy and cell count. We demonstrated that ES at 20 and 40 mV/mm promoted cell adhesion, viability and growth. ES also decreased the secretion of pro-inflammatory cytokines IL-6 and IL-8 yet promoted growth factor FGF7 secretion during 48 h post-ES. Finally, the beneficial effect of ES on fibroblast growth was maintained up to 5 days post-ES. Overall results suggest the possible use of low-intensity direct current ES to promote wound healing in diabetic patients.

2021 ◽  
Vol 12 ◽  
Author(s):  
Miho Takahashi ◽  
Yoshie Umehara ◽  
Hainan Yue ◽  
Juan Valentin Trujillo-Paez ◽  
Ge Peng ◽  
...  

In addition to its antimicrobial activity, the skin-derived antimicrobial peptide human β-defensin-3 (hBD-3) promotes keratinocyte proliferation and migration to initiate the wound healing process; however, its effects on fibroblasts, which are the major cell type responsible for wound healing, remain unclear. We investigated the role of hBD-3 in cell migration, proliferation and production of angiogenic growth factors in human fibroblasts and evaluated the in vivo effect of hBD-3 on promoting wound healing and angiogenesis. Following hBD-3 treatment, the mouse wounds healed faster and showed accumulation of neutrophils and macrophages in the early phase of wound healing and reduction of these phagocytes 4 days later. hBD-3-treated wounds also displayed an increased number of fibroblasts and newly formed vessels compared to those of the control mice. Furthermore, the expression of various angiogenic growth factors was increased in the hBD-3-treated wounds. Additionally, in vitro studies demonstrated that hBD-3 enhanced the secretion of angiogenic growth factors such as fibroblast growth factor, platelet-derived growth factor and vascular endothelial growth factor and induced the migration and proliferation of human fibroblasts. The hBD-3-mediated activation of fibroblasts involves the fibroblast growth factor receptor 1 (FGFR1)/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathways, as evidenced by the inhibitory effects of pathway-specific inhibitors. We indeed confirmed that hBD-3 enhanced the phosphorylation of FGFR1, JAK2 and STAT3. Collectively, the current study provides novel evidence that hBD-3 might be a potential candidate for the treatment of wounds through its ability to promote wound healing, angiogenesis and fibroblast activation.


2020 ◽  
Author(s):  
Yongfa Sun ◽  
Lili Song ◽  
Yong Zhang ◽  
Hongjun Wang ◽  
Xiao Dong

Abstract BACKGROUND: Diabetic patients suffer from impaired wound healing. Mesenchymal stem cell (MSC) therapy represents a promising approach toward improving skin wound healing through release of soluble growth factors and cytokines that stimulate new vessel formation and modulate inflammation. Whether adipose-derived MSCs (ASCs) from type 2 diabetes donors are suitable for skin damage repair remains largely unknown. METHODS: In this study, we compared the phenotype and functionality of ASCs harvested from high fat diet (HFD) and streptozotocin (STZ)-induced T2D or control mice, and assessed their abilities to promote wound healing in an excisional wound splinting mouse model with T2D. RESULTS: T2D ASCs expressed similar cellular markers as control ASCs, but secreted less hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and transforming growth factor β (TGF-β). T2D ASCs were somewhat less effective in promoting healing of the wound, as manifested by slightly reduced re-epithelialization, cutaneous appendage regeneration, and collagen III deposition in wound tissues. In vitro, T2D ASCs promoted proliferation and migration of skin fibroblasts to a comparable extent as control ASCs via suppression of inflammation and macrophage infiltration. CONCLUSIONS: From these findings, we conclude that, although ASCs from T2D mice are marginally inferior to control ASCs, they possess comparable therapeutic effects in wound healing.


1996 ◽  
Vol 320 (2) ◽  
pp. 659-664 ◽  
Author(s):  
Marianne MADLENER ◽  
Cornelia MAUCH ◽  
Walter CONCA ◽  
Maria BRAUCHLE ◽  
William C. PARKS ◽  
...  

Keratinocyte growth factor (KGF) has been implicated in wound re-epithelialization and branching morphogenesis of several organs. To determine whether KGF induces these effects via induction of matrix metalloproteinase expression we have analysed the effect of KGF on the expression of stromelysin-2 in cultured HaCaT keratinocytes. Here we show a strong induction of stromelysin-2 mRNA within 5–8 h of stimulation of these cells with KGF. The degree of induction was similar to that achieved by treatment with epidermal growth factor or tumour necrosis factor α, whereas the stimulatory effect of transforming growth factor β1 was even stronger. To determine whether the induction of stromelysin-2 expression by growth factors and cytokines might be important for wound healing, we analysed the expression of this gene during the healing process of full-thickness excisional wounds in mice. Whereas stromelysin-2 mRNA could hardly be detected in unwounded skin, a biphasic induction was seen after injury and highest levels were found at days 1 and 5 after wounding. Hybridization in situ revealed the presence of stromelysin-2 mRNA in basal keratinocytes at the wound edge but not in the underlying mesenchymal tissue. During impaired wound healing as seen in glucocorticoid-treated mice, stromelysin-2 expression was significantly increased compared with untreated control mice. Taken together, these results suggest that correct regulation of this broad-spectrum metalloproteinase might be important for normal repair.


2005 ◽  
Vol 186 (2) ◽  
pp. 273-289 ◽  
Author(s):  
Akiko Komi-Kuramochi ◽  
Mitsuko Kawano ◽  
Yuko Oda ◽  
Masahiro Asada ◽  
Masashi Suzuki ◽  
...  

The highly ordered process of wound healing involves the coordinated regulation of cell proliferation and migration and tissue remodeling, predominantly by polypeptide growth factors. Consequently, the slowing of wound healing that occurs in the aged may be related to changes in the activity of these various regulatory factors. To gain additional insight into these issues, we quantified the absolute copy numbers of mRNAs encoding all the fibroblast growth factors (FGFs), their receptors (FGFRs) and two other growth factors in the dorsal skin of young and aged mice during the healing of full-thickness skin excisional wounds. In young adult mice (8 weeks old), FGF7, FGF10 and FGF22 mRNAs were all strongly expressed in healthy skin, and levels of FGF7 and 10 but not 22 increased 2- to 3.5-fold over differing time courses after wounding. The levels of FGF9, 16, 18 and especially 23 mRNAs were moderate or low in healthy skin but increased 2- to 33-fold after wounding. Among the four FGFRs, expression of only FGFR1 mRNA was augmented during wound healing. Expression of transforming growth factor-β and hepatocyte growth factor was also high in healthy skin and was upregulated during healing. Notably, in aged mice (35 weeks old), where healing proceeded more slowly than in the young, both the basal and wound-induced mRNA expression of most of these genes was reduced. While these results confirm the established notion that FGFR2 IIIB ligands (FGF7 and FGF10) are important for wound healing, they also suggest that decreased expression of multiple FGF ligands contributes to the slowing of wound healing in aged mice and indicate the potential importance of further study of the involvement of FGF9, 16, 18 and 23 in the wound healing process.


Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 148
Author(s):  
Anna Kurek-Górecka ◽  
Katarzyna Komosinska-Vassev ◽  
Anna Rzepecka-Stojko ◽  
Paweł Olczyk

Bee venom (BV), also known as api-toxin, is widely used in the treatment of different inflammatory diseases such as rheumatoid arthritis or multiple sclerosis. It is also known that BV can improve the wound healing process. BV plays a crucial role in the modulation of the different phases of wound repair. It possesses anti-inflammatory, antioxidant, antifungal, antiviral, antimicrobial and analgesic properties, all of which have a positive impact on the wound healing process. The mentioned process consists of four phases, i.e., hemostasis, inflammation, proliferation and remodeling. The impaired wound healing process constitutes a significant problem especially in diabetic patients, due to hypoxia state. It had been found that BV accelerated the wound healing in diabetic patients as well as in laboratory animals by impairing the caspase-3, caspase-8 and caspase-9 activity. Moreover, the activity of BV in wound healing is associated with regulating the expression of transforming growth factor (TGF-β1), vascular endothelial growth factor and increased collagen type I. BV stimulates the proliferation and migration of human epidermal keratinocytes and fibroblasts. In combination with polyvinyl alcohol and chitosan, BV significantly accelerates the wound healing process, increasing the hydroxyproline and glutathione and lowering the IL-6 level in wound tissues. The effect of BV on the wounds has been proved by numerous studies, which revealed that BV in the wound healing process brings about a curative effect and could be applied as a new potential treatment for wound repair. However, therapy with bee venom may induce allergic reactions, so it is necessary to assess the existence of the patient’s hypersensitivity to apitoxin before treatment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ye Liu ◽  
Yiqiu Liu ◽  
Junyu Deng ◽  
Wei Li ◽  
Xuqiang Nie

Diabetic foot ulcer (DFU) is a combination of neuropathy and various degrees of peripheral vasculopathy in diabetic patients resulting in lower extremity infection, ulcer formation, and deep-tissue necrosis. The difficulty of wound healing in diabetic patients is caused by a high glucose environment and various biological factors in the patient. The patients’ skin local microenvironment changes and immune chemotactic response dysfunction. Wounds are easy to be damaged and ulcerated repeatedly, but difficult to heal, and eventually develop into chronic ulcers. DFU is a complex biological process in which many cells interact with each other. A variety of growth factors released from wounds are necessary for coordination and promotion of healing. Fibroblast growth factor (FGF) is a family of cell signaling proteins, which can mediate various processes such as angiogenesis, wound healing, metabolic regulation and embryonic development through its specific receptors. FGF can stimulate angiogenesis and proliferation of fibroblasts, and it is a powerful angiogenesis factor. Twenty-three subtypes have been identified and divided into seven subfamilies. Traditional treatments for DFU can only remove necrotic tissue, delay disease progression, and have a limited ability to repair wounds. In recent years, with the increasing understanding of the function of FGF, more and more researchers have been applying FGF-1, FGF-2, FGF-4, FGF-7, FGF-21 and FGF-23 topically to DFU with good therapeutic effects. This review elaborates on the recently developed FGF family members, outlining their mechanisms of action, and describing their potential therapeutics in DFU.


2020 ◽  
Author(s):  
Yongfa Sun ◽  
Lili Song ◽  
Yong Zhang ◽  
Hongjun Wang ◽  
Xiao Dong

Abstract BACKGROUND: Diabetic patients suffer from impaired wound healing. Mesenchymal stem cell (MSC) therapy represents a promising approach toward improving skin wound healing through release of soluble growth factors and cytokines that stimulate new vessel formation and modulate inflammation. Whether adipose-derived MSCs (ASCs) from type 2 diabetes donors are suitable for skin damage repair remains largely unknown. METHODS: In this study, we compared the phenotype and functionality of ASCs harvested from high fat diet (HFD) and streptozotocin (STZ)-induced T2D or control mice, and assessed their abilities to promote wound healing in an excisional wound splinting mouse model with T2D. RESULTS: T2D ASCs expressed similar cellular markers as control ASCs, but secreted less hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), and transforming growth factor β (TGF-β). T2D ASCs were somewhat less effective in promoting healing of the wound, as manifested by slightly reduced re-epithelialization, cutaneous appendage regeneration, and collagen III deposition in wound tissues. In vitro, T2D ASCs promoted proliferation and migration of skin fibroblasts to a comparable extent as control ASCs via suppression of inflammation and macrophage infiltration. CONCLUSIONS: From these findings, we conclude that, although ASCs from T2D mice are marginally inferior to control ASCs, they possess comparable therapeutic effects in wound healing.


1999 ◽  
Vol 338 (3) ◽  
pp. 637-642 ◽  
Author(s):  
Nicholas N. NISSEN ◽  
Ravi SHANKAR ◽  
Richard L. GAMELLI ◽  
Ashok SINGH ◽  
Luisa A. DiPIETRO

Non-enzymic glycosylation of basic fibroblast growth factor (bFGF, FGF-2) has recently been demonstrated to decrease the mitogenic activity of intracellular bFGF. Loss of this bioactivity has been implicated in impaired wound healing and microangiopathies of diabetes mellitus. In addition to intracellular localization, bFGF is also widely distributed in the extracellular matrix, primarily bound to heparan sulphate proteoglycans (HSPGs). Nonetheless, it is not clear if non-enzymic glycosylation similarly inactivates matrix-bound bFGF. To investigate this, we measured the effect of non-enzymic glycosylation on bFGF bound to heparin, heparan sulphate and related compounds. Incubation of bFGF with the glycosylating agents glyceraldehyde 3-phosphate (G3P; 25 mM) or fructose (250 mM) resulted in loss of 90% and 40% of the mitogenic activity of bFGF respectively. Treatment with G3P and fructose also decreased the binding of bFGF to a heparin column. If heparin was added to bFGF prior to non-enzymic glycosylation, the mitogenic activity and heparin affinity of bFGF were nearly completely preserved. A similar protective effect was demonstrated by heparan sulphate, low-molecular-mass heparin and the polysaccharide dextran sulphate, but not by chondroitin sulphate. Whereas non-enzymic glycosylation of bFGF with G3P impaired its ability to stimulate c-myc mRNA expression in fibroblasts, no such impairment was noticeable when bFGF was glycosylated in the presence of heparin. Taken together, these results suggest that HSPG-bound bFGF is resistant to non-enzymic glycosylation-induced loss of activity. Therefore, alteration of this pool probably does not contribute to impaired wound healing seen in diabetes mellitus.


Sign in / Sign up

Export Citation Format

Share Document