scholarly journals Assessments of the Ecological and Health Risks of Potentially Toxic Metals in the Topsoils of Different Land Uses: A Case Study in Peninsular Malaysia

Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 2
Author(s):  
Chee Kong Yap ◽  
Weiyun Chew ◽  
Khalid Awadh Al-Mutairi ◽  
Rosimah Nulit ◽  
Mohd. Hafiz Ibrahim ◽  
...  

Human activities due to different land uses are being studied widely in many countries. This study aimed to determine the ecological risks and human health risk assessments (HHRA) of Cd, Pb, Ni, Cu, and Zn in the topsoils of six land uses in Peninsular Malaysia. The ranges of the potentially toxic metals (PTMs) in the soils (mg/kg, dry weight) of this study were 0.24–12.43 for Cd (mean: 1.94), 4.66–2363 for Cu (mean: 228), 2576–116,344 for Fe (mean: 32,618), 2.38–75.67 for Ni (mean: 16.04), 7.22–969 for Pb (mean: 115) and 11.03–3820 for Zn (mean: 512). For the ecological risk assessments, the potential ecological risk index (PERI) for single metals indicated that the severity of pollution of the five metals decreased in the following sequence: Cd > Cu > Pb > Zn > Ni. It was found that industry, landfill, rubbish heap, and mining areas were categorized as “very high ecological risk”. For HHRA, the land uses of industry, landfill and rubbish heap were found to have higher hazard quotient (HQ) values for the three pathways (with the order: ingestion > dermal contact > inhalation ingestion) of the five metals for children and adults, when compared to the mining, plantation, and residential areas. The values for both the non-carcinogenic (Cd, Cu, Ni, and Zn), and carcinogenic risks (CR) for inhalation (Cd and Ni) obtained for children and adults in this study showed no serious adverse health impacts on their health. However, of public concern, the hazard index (HI), for Pb of children at the landfill (L-3) and the rubbish heap (RH-3) sites exceeded 1.0, indicating non-carcinogenic risk (NCR) for children. Therefore, these PERI and HHRA results provided fundamental data for PTMs pollution mitigation and environmental management in areas of different land uses in Peninsular Malaysia.

2021 ◽  
Author(s):  
Mohammed Alsafran ◽  
Kamal Usman ◽  
Hareb Al Jabri ◽  
Muhammad Rizwan

Potentially toxic environmental contaminants, including metals and metalloids, are commonly found in emerging economies. At high concentrations, elements such as As, Cr, and Ni can be hazardous and may lead to various health problems in humans, including cancer. The current study measured As, Cd, Cr, Cu, Ni, Pb, V, and Zn concentrations in agricultural soils. Pollution levels and potential negative impacts on human and environmental health were determined using the United States Environmental Protection Agency (USEPA) standard methodologies. According to the study’s findings, the studied element concentrations descended in the following order: Zn > Cr > V > Ni > As > Cu > Pb > Cd. Of these, As (27.6 mg/kg), Cr (85.7 mg/kg), Ni (61.9 mg/kg), and Zn (92.3 mg/kg) concentrations were higher than average world background levels. Each of these elements also had an enrichment factor (EF > 1), indicating their anthropogenic origin. The combined pollution load index (PLI > 1) and geo-accumulation index (Igeo) range values of −0.2–2.5 further indicated that the soil was polluted up to 58%. However, the ecological risk factor (Er ≤ 40.6) and potential ecological risk index (PERI = 79.6) suggested low ecological risk. A human health risk evaluation showed that only As, with a hazard index (HI) of 1.3, posed a non-carcinogenic risk to infants. Additionally, As, Cr, and Ni, with total carcinogenic risk (TCR) values of 1.18 × 10−4 and 2.06 × 10−4 for adults and children, respectively, proved carcinogenic to both age groups. The elements’ carcinogenic risk (CR) potential descended in the following order: Ni > As > Cr. Additionally, for both adults and children, oral ingestion is the most likely exposure pathway. Our findings support the need for closer monitoring of potentially toxic metals and metalloids levels in cultivated soils and farm produce in Qatar.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fereshteh Karimi ◽  
Nabi Shariatifar ◽  
Mohammad Rezaei ◽  
Mahsa Alikord ◽  
Majid Arabameri

AbstractThe current study aims to investigate the levels of the toxic metal in agricultural products (legumes, wheat, and potato) collected in Markazi province, Iran, and human health risk by using inductively coupled plasma - optical emission spectrometry (ICP-OES). The levels of arsenic (As) and cadmium (Cd) in all samples were lower than the limit of detection (LOD), while the level of Cd in potato samples was lower than the maximum permisible level (MPL) of the European commission (EC). The non-carcinogenic and carcinogenic risk assessment by direct ingestion of agricultural products was calculated using the United States Environmental Protection Agency (USEPA) method. The highest mean of toxic metals was observed for lead (Pb) in legume samples (562.17 μg kg− 1). Mercury (Hg) and Pb levels in all samples were higher than LOD, while Pb level in wheat samples were lower than of EC. The rank order of Hg and Pb levels in all samples based on target hazard quotient (THQ) value was wheat> potato>legume. The THQ index of Hg and Pb by the deterministic method in wheat was 1.37 and 0.454; in potato 0.139 and 0.104; in legume 0.092 and 0.41, respectively. The carcinogenic risk index was at an acceptable range. The high hazard index values were estimated and the THQ index for Hg in wheat suggests a non-negligible health risk.


2019 ◽  
Vol 9 (22) ◽  
Author(s):  
Godfred Darko ◽  
Kwadwo Owusu Boakye ◽  
Marian Asantewaa Nkansah ◽  
Opoku Gyamfi ◽  
Eugene Ansah ◽  
...  

Background. Anthropogenic activities such as artisanal mining pose a major environmental health concern due to the potential for discharge of toxic metals into the environment. Objectives. To determine the distribution and pollution patterns of arsenic (As), iron (Fe), nickel (Ni), cobalt (Co), chromium (Cr), manganese (Mn), copper (Cu) and zinc (Zn) in the topsoil of a mining community in Ghana, along with potential human health risks and in vitro bioaccessibility. Methods. Concentrations of metals were determined using X-ray fluorescence techniques and validated using inductively coupled plasma-mass spectrometry. Results. Concentrations of the metals in topsoil were in the order of magnitude of Cu (31.38 mg/kg) < Ni (45.39 mg/kg) < As (59.66 mg/kg) < Cr (92.87 mg/kg) < Zn (106.98 mg/kg) < Mn (1195.49 mg/kg) < Fe (30061.02 mg/kg). Geo-statistical and multivariate analyses based on hazard indices including contamination, ecological risks, geo-accumulation, and pollution load suggest that the topsoils are contaminated in the study area. The potential ecological risk index (PERI) showed high ecological risk effects (PERI=269.09), whereas the hazard index (1×10−7) and carcinogenic risk index (1×10−5) indicated low human health risks. Elevated levels of As, Cr, Ni, and Zn were found to emanate from anthropogenic origins, whereas Fe, Mn, and Cu levels were attributed mainly to geological and atmospheric depositions. Physicochemical parameters (pH, electrical conductivity and total organic carbon) showed weak positive correlations to the metal concentrations. Elemental bioaccessibility was variable, decreasing in the order of Mn (35± 2.9%) > Cu (29± 2.6%) > Ni (22± 1.3%) > As (9± 0.5%) > Cr (4± 0.6%) > Fe (2± 0.4%). Conclusions. Incorporation of in-vitro bioaccessibility into the risk characterization models resulted in a hazard index of less than 1, implying low human health risks. However, due to accumulation effects of the metals, regular monitoring is required. Competing Interests. The authors declare no competing financial interests.


2021 ◽  
Author(s):  
Fereshteh Karimi ◽  
Nabi Shariatifar ◽  
Mohammad Rezaei ◽  
Mahsa Alikord ◽  
Majid Arabameri

Abstract The aim of current study is to measurement and investigate the toxic metals levels in plant-based food collected in Markazi province and human health risk by using inductively coupled plasma - optical emission spectrometry (ICP-OES). The levels of arsenic (As) and cadmium (Cd) in all samples were lower than LOD, while level of Cd in potato samples were lower than permitted limit of European commission (EC). The highest mean of toxic metals were observed for lead (Pb) in legume samples (562.17 µg kg− 1). Mercury (Hg) and Pb levels in all samples were higher than LOD, while Pb level in wheat samples were lower than of EC. The rank order of Hg and Pb levels in all samples based on target hazard quotient (THQ) value was wheat > potato > legume. The 95% THQ index of Hg and Pb for adults in wheat samples were 2.59E + 00 and 7.19E-01, in potato samples were 2.07E-01 and 1.64E-01; in legume samples were1.41E-01 and 6.61E-02respectively, while in the case of children, the 95% THQ index of Hg and Pb in wheat samples were 8.90E + 00 and 2.44E + 00; in potato samples were 1.17E + 00 and 5.81E-01; in legume samples were4.77E-01 and 2.20E-01 respectively. The high hazard index values were estimated, indicating a high health risk from consumption of wheat and potato.


2021 ◽  
Vol 11 (9) ◽  
pp. 4314
Author(s):  
Dokyung Kim ◽  
Tae-Yang Lee ◽  
Lia Kim ◽  
Rongxue Cui ◽  
Jin Il Kwak ◽  
...  

For site-specific soil ecological risk assessments (SERAs), an integrated chemical, ecotoxicological, and ecological analysis needs to be performed. The SERA guidelines of international institutions and countries recommend that a SERA be initiated at the screening level to save time and social economic cost; however, they provide no unified test species for this screening level. This study performed SERAs for field soils and confirmed the importance of selecting bioassay test species that reflect the ecotoxicity of field soils at the screening level. To confirm test species that reflect the ecological risk of field soils, correlation analysis was performed on the results of each bioassay with the integrated ecotoxicological risk index (EtoxRI). Our results showed that soil algae, nematodes, and plants were the most representative species in soil assays, with high correlation coefficients with EtoxRI. The results imply the importance of selecting test species that represent ecological risk for the screening level of SERAs. Based on these findings, when using SERAs, species sensitivity, ecological relevance, and economic aspects should be considered when selecting the bioassay test species.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Nsikak U. Benson ◽  
Paul A. Enyong ◽  
Omowunmi H. Fred-Ahmadu

The purpose of this study was to investigate and quantify trace metal concentrations inCommelina africanaL. and psammitic sandflats from an intertidal coastal ecosystem in Niger Delta, Nigeria, and to evaluate their spatial distribution, degree of contamination, and source apportionment. The environmental risks associated with soil contamination were elaborately assessed using potential ecological risk index, sediment quality guidelines, and enrichment relative to background levels. The mean concentrations of Cd, Cr, Ni, Pb, and Zn in sandflat soil samples are0.76±9.0×10-2,7.39±8.7×10-1,2.28±0.35,0.024±4.0×10-3, and74.51±2.55 mg/kg, respectively. Metal levels indicate strong variability with sampling sites. The order of trace metal concentrations in theCommelina africanaL. samples isZn>Ni>Cr>Pb>Cd. The concentrations varied with the sample locations; and the levels of Pb (0.05 to 0.08 mg/kg) at all locations are found to be significantly below permissible level of 0.3 mg/kg. Potential sources of metal loadings may be associated with localised or diffused anthropogenic activities. The average carcinogenic risks are below1.0×10-6threshold values, and the sandflat soils are not considered to pose significant health effects to children and adult males and females. However, the carcinogenicity and noncarcinogenicity risks ranking decrease following the orderchildren>adult  males>adult  females. Comparatively, the hazard quotient and hazard index indicate that the psammitic sandflats might pose a health risk to children in future.


Toxics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 75
Author(s):  
Rongxi Li ◽  
Yuan Yuan ◽  
Chengwei Li ◽  
Wei Sun ◽  
Meng Yang ◽  
...  

Shanghai is the major city on the north shore of Hangzhou Bay, and the administrative regions adjacent to Hangzhou Bay are the Jinshan district, Fengxian district, and Pudong new area (Nanhui district), which are the main intersection areas of manufacturing, transportation, and agriculture in Shanghai. In this paper, we collected a total of 75 topsoil samples from six different functional areas (agricultural areas (19), roadside areas (10), industrial areas (19), residential areas (14), education areas (6), and woodland areas (7)) in these three administrative regions, and the presence of 10 heavy metals (manganese(Mn), zinc(Zn), chromium(Cr), nickel(Ni), lead(Pb), cobalt(Co), cadmium(Cd), mercury(Hg), copper(Cu), and arsenic(As)) was investigated in each sample. The Nemerow pollution index (NPI), pollution load index (PLI), and potential ecological risk index (PERI) were calculated to assess the soil pollution levels. The hazard quotient (HQ) and carcinogenic risk (CR) assessment models were used to assess the human health risks posed by the concentrations of the heavy metals. The CR and HQ for adults and children in different functional areas descended in the following order: industrial areas > roadside areas > woodland areas > residential areas > education areas > agricultural areas. The HQ of Mn for children in industrial areas was higher than 1, and the risk was within the acceptable range.


Sign in / Sign up

Export Citation Format

Share Document