scholarly journals Microcrater-Arrayed Chemiluminescence Cell Chip to Boost Anti-Cancer Drug Administration in Zebrafish Tumor Xenograft Model

Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 4
Author(s):  
Ching-Te Kuo ◽  
Yu-Sheng Lai ◽  
Siang-Rong Lu ◽  
Hsinyu Lee ◽  
Hsiu-Hao Chang

Purpose: The aim of this study was to develop a rapid and automatic drug screening platform using microcrater-arrayed (µCA) cell chips. Methods: The µCA chip was fabricated using a laser direct writing technique. The fabrication time required for one 9 × 9 microarray wax chip was as quick as 1 min. On a nanodroplet handling platform, the chip was pre-coated with anti-cancer drugs, including cyclophosphamide, cisplatin, doxorubicin, oncovin, etoposide, and 5-fluorouracil, and their associated mixtures. Cell droplets containing 100 SK-N-DZ or MCF-7 cells were then loaded onto the chip. Cell viability was examined directly through a chemiluminescence assay on the chip using the CellTiter-Glo assay. Results: The time needed for the drug screening assay was demonstrated to be less than 30 s for a total of 81 tests. The prediction of optimal drug synergy from the µCA chip was found by matching it to that of the zebrafish MCF-7 tumor xenograft model, instead of the conventional 96-well plate assay. In addition, the critical reagent volume and cell number for each µCA chip test were 200 nL and 100 cells, respectively, which were significantly lower than 100 µL and 4000 cells, which were achieved using the 96-well assay. Conclusion: Our study for the µCA chip platform could improve the high-throughput drug synergy screening targeting the applications of tumor cell biology.

2012 ◽  
Vol 8 (7) ◽  
pp. 1930 ◽  
Author(s):  
Da-Woon Jung ◽  
Eun-Sang Oh ◽  
Si-Hwan Park ◽  
Young-Tae Chang ◽  
Cheol-Hee Kim ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5512 ◽  
Author(s):  
Kinga Piorecka ◽  
Anna Janaszewska ◽  
Marta Majkowska ◽  
Monika Marcinkowska ◽  
Jan Kurjata ◽  
...  

A novel strategy, recently developed by us, to use polyhedral oligomeric silsesquioxanes (POSS) as an anti-cancer drug carrier is presented. Anthracycline:POSS complexes were prepared by simple co-addition of doxorubicin (DOX) or daunorubicin (DAU) with hydrophilic POSS(OH)32. Co-delivery of POSS and anthracyclines led to higher anti-cancer activity towards HeLa (cervical cancer endothelial) and MCF-7 (human breast adenocarcinoma) cell lines. The obtained supramolecular hybrid complexes were characterised by nuclear magnetic resonance (NMR) spectroscopy (nuclear Overhauser effect spectroscopy [NOESY] and homonuclear correlation spectroscopy [COSY]), Fourier transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS). The two-dimensional (2D) NOESY spectra of the complexes showed the cross-correlation peaks for hydroxyl groups of POSS (~4.3–4.8 ppm) with OH groups of DOX and DAU. FTIR showed that hydroxyl group of POSS can interact with amine and hydroxyl groups of DOX and DAU. The viability of HeLa and MCF-7 was analysed with the MTT assay to evaluate the cytotoxicity of free DOX and DAU and the relevant complexes with POSS at different molar ratios. At a low DOX concentration (2.5 µM), for molar ratios 1:1, 1:4, and 1:8 (POSS:DOX), the complexes showed two and three times higher cytotoxicity towards HeLa and MCF-7 cells, respectively, than DOX itself after both 24- and 48-h incubation. The 1 µM concentration for a 1:4 POSS:DOX molecular ratio and the 2.5 µM concentration for all complexes were more toxic towards MCF-7 cells than free DOX after 48-h incubation. In the case of POSS:DAU complexes, there was higher toxicity than that of free drug after 48-h incubation. It can be concluded that the formation of non-covalent complexes increases toxicity of anthracycline drugs towards Hela and MCF-7 cells. The novel complexes are inexpensive to prepare and more effective than free drugs at low systemic toxicity.


2017 ◽  
Vol 34 (9) ◽  
pp. 1538-1546 ◽  
Author(s):  
Kristina Preuer ◽  
Richard P I Lewis ◽  
Sepp Hochreiter ◽  
Andreas Bender ◽  
Krishna C Bulusu ◽  
...  

2017 ◽  
Vol 40 (2) ◽  
pp. 427-435 ◽  
Author(s):  
Jianing Yang ◽  
Shengjun Zhao ◽  
Yunfei Ji ◽  
Lili Zhao ◽  
Qingzhu Kong ◽  
...  

Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4879-4879
Author(s):  
Myoung Woo Lee ◽  
Hye Jin Kim ◽  
Dae Seong Kim ◽  
Meong Hi Son ◽  
Soo Hyun Lee ◽  
...  

Abstract Abstract 4879 Background. A hematological malignant animal model is an essential tool for evaluating efficacy of anti-cancer drugs and elucidating underlying mechanism of leukemogenesis. Intraperitoneal (IP) and intravenous (IV) xenograft of acute lymphoblastic leukemia (ALL) cells have limited capacity as in vivo anti-cancer drug screening system. Purpose. In this study, we aimed to establish an ALL animal model using NOD/SCID mouse and evaluate efficiency and sensitivity of the model as a preclinical drug screening system. Materials and Methods. Firefly luciferase (fLuc)-gene introduced ALL (ALL/fLuc) cell line and patient-originated ALL cells were transplanted into a tibia of NOD/SCID mouse. We conducted a comparative analysis of intra-bone marrow (IBMT) transplanted leukemia model with IP and IV transplantation of leukemic cells. Results. IBMT of ALL/fLuc cells effectively established a bioluminescent leukemia NOD/SCID mouse model. Upon comparison of IBMT model with IP and IV transplantation models, infusing identical number of ALL/fLuc cells into NOD/SCID mice resulted in IBMT model with evaluable bioluminescent signal, but not in IP and IV models. In IBMT model, bioluminescent signals of ALL/fLuc cells emitted from peripheral blood, tibia and infiltrated organs indicated that leukemia model was established. The changes in these signals' strength reflected dose-dependent cytotoxic effects of vincristine, which allowed leukemia model with evaluable bioluminescent signal to be utilized as a preclinical drug screening system. IBMT leukemia model was also established using primary ALL cells that can provide additional insights for the development of leukemia therapeutics. Conclusion. IBMT of ALL/fLuc cells enables development of leukemia mouse model with the greater bioluminescent sensitivity than IP and IV in NOD/SCID to evaluate candidate for development of anti-cancer drug. Disclosures: No relevant conflicts of interest to declare.


2014 ◽  
Vol 5 (10) ◽  
pp. e1462-e1462 ◽  
Author(s):  
S Senese ◽  
Y C Lo ◽  
D Huang ◽  
T A Zangle ◽  
A A Gholkar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document