scholarly journals Unfavorable Effects of Peritoneal Dialysis Solutions on the Peritoneal Membrane: The Role of Oxidative Stress

Biomolecules ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 768
Author(s):  
Stefanos Roumeliotis ◽  
Evangelia Dounousi ◽  
Marios Salmas ◽  
Theodoros Eleftheriadis ◽  
Vassilios Liakopoulos

One of the main limitations to successful long-term use of peritoneal dialysis (PD) as a renal replacement therapy is the harmful effects of PD solutions to the structure and function of the peritoneal membrane (PM). In PD, the PM serves as a semipermeable membrane that, due to exposure to PD solutions, undergoes structural alterations, including peritoneal fibrosis, vasculopathy, and neoangiogenesis. In recent decades, oxidative stress (OS) has emerged as a novel risk factor for mortality and cardiovascular disease in PD patients. Moreover, it has become evident that OS plays a pivotal role in the pathogenesis and development of the chronic, progressive injury of the PM. In this review, we aimed to present several aspects of OS in PD patients, including the pathophysiologic effects on the PM, clinical implications, and possible therapeutic antioxidant strategies that might protect the integrity of PM during PD therapy.

2001 ◽  
Vol 21 (3_suppl) ◽  
pp. 349-353 ◽  
Author(s):  
Hidetomo Nakamoto ◽  
Hiroe Imai ◽  
Yuji Ishida ◽  
Yasuhiro Yamanouchi ◽  
Tsutomu Inoue ◽  
...  

Objective Encapsulating peritoneal sclerosis (EPS), in which all or part of the intestine is enveloped in a fibrous ball resembling a cocoon, is a serious complication of peritoneal dialysis (PD). The aim of the present study was to investigate whether pH-neutral or acidic dialysis solutions induce peritoneal fibrosis. Design We divided 18 male Wistar–Kyoto (WKY) rats into three groups and dialyzed them with various solutions as follows: group I, 10 mL acidic dialysis solution (pH 3.8, containing 1.35% glucose), n = 6; group II, 10 mL pH 5.0 dialysis solution, n = 6; and group III, 10 mL neutral dialysis solution (pH 7.0), n = 6. Peritoneal catheters were inserted, and dialysis solution was injected every day for 40 days. At the end of the experiment, a peritoneal equilibration test (PET) was performed. Expression of mRNA of aquaporins 1 and 4 (AQP-1 and AQP-4) in the peritoneum were studied by semiquantitative reverse-transcriptase polymerase chain reaction (RT-PCR). Results In rats treated with pH 3.8 dialysis solution, necropsy findings revealed features identical to those of EPS. The typical appearance was of granulation tissue or fibrotic tissue (or both) covering multiple surfaces. Multiple adhesions were present. In microscopic examinations, peritoneal fibrosis and loss of mesothelium were found. In rats treated with pH 7.0 dialysis solution, no signs of EPS were seen. In rats treated with pH 5.0 dialysis solution, milder changes (subserosal thickening and partial adhesion of the peritonea) were observed. The mRNA of AQP-1 and AQP-4 were expressed in the peritonea of the rats. The expression of the AQPs was significantly suppressed in rats treated with pH 3.8 dialysis solution. Conclusions In rats, long-term intraperitoneal injection of acidic dialysis solution produced features typical of EPS in humans. Newly developed neutral dialysis solutions protected the against the development of EPS during peritoneal dialysis in rats.


2004 ◽  
Vol 66 (3) ◽  
pp. 1257-1265 ◽  
Author(s):  
Siska Mortier ◽  
Dirk Faict ◽  
Casper G. Schalkwijk ◽  
Norbert H. Lameire ◽  
A.N.S. De Vriese

2005 ◽  
Vol 25 (4_suppl) ◽  
pp. 48-56 ◽  
Author(s):  
Masanobu Miyazaki ◽  
Yukio Yuzawa

Encapsulating peritoneal sclerosis (EPS) is a serious complication of long-term continuous peritoneal dialysis therapy. The progression of EPS has been classified into four stages by Kawanishi and colleagues: pre-EPS, and the inflammatory, encapsulating, and ileus stages. The key issue is how to diagnose EPS early enough to allow for curative treatment. In this article, we review the mechanisms of peritoneal fibrosis, especially from the perspective of collagen synthesis, and the potential role of that fibrosis in the pathogenesis of EPS.


2008 ◽  
Vol 109 (2) ◽  
pp. e71-e78 ◽  
Author(s):  
Qiang Yao ◽  
Krzysztof Pawlaczyk ◽  
Ernesto Rodríguez Ayala ◽  
Arkadiusz Styszynski ◽  
Andrzej Breborowicz ◽  
...  

2015 ◽  
Vol 35 (1) ◽  
pp. 14-25 ◽  
Author(s):  
Yu Liu ◽  
Zheng Dong ◽  
Hong Liu ◽  
Jiefu Zhu ◽  
Fuyou Liu ◽  
...  

Long-term peritoneal dialysis (PD) can lead to fibrotic changes in the peritoneum, characterized by loss of mesothelial cells (MCs) and thickening of the submesothelial area with an accumulation of collagen and myofibroblasts. The origin of myofibroblasts is a central question in peritoneal fibrosis that remains unanswered at present. Numerous clinical and experimental studies have suggested that MCs, through epithelial-mesenchymal transition (EMT), contribute to the pool of peritoneal myofibroblasts. However, recent work has placed significant doubts on the paradigm of EMT in organ fibrogenesis (in the kidney particularly), highlighting the need to reconsider the role of EMT in the generation of myofibroblasts in peritoneal fibrosis. In particular, selective cell isolation and lineage-tracing experiments have suggested the existence of progenitor cells in the peritoneum, which are able to switch to fibroblast-like cells when stimulated by the local environment. These findings highlight the plastic nature of MCs and its contribution to peritoneal fibrogenesis. In this review, we summarize the key findings and caveats of EMT in organ fibrogenesis, with a focus on PD-related peritoneal fibrosis, and discuss the potential of peritoneal MCs as a source of myofibroblasts.


Biology ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 241 ◽  
Author(s):  
Elizabeth Torres-Arce ◽  
Barbara Vizmanos ◽  
Nancy Babio ◽  
Fabiola Márquez-Sandoval ◽  
Albert Salas-Huetos

Infertility affects about 15% of the population and male factors only are responsible for ~25–30% of cases of infertility. Currently, the etiology of suboptimal semen quality is poorly understood, and many environmental and genetic factors, including oxidative stress, have been implicated. Oxidative stress is an imbalance between the production of free radicals, or reactive oxygen species (ROS), and the capacity of the body to counteract their harmful effects through neutralization by antioxidants. The purpose of this review, by employing the joint expertise of international researchers specialized in nutrition and male fertility areas, is to update the knowledge about the reproductive consequences of excessive ROS concentrations and oxidative stress on the semen quality and Assisted Reproduction Techniques (ART) clinical outcomes, to discuss the role of antioxidants in fertility outcomes, and finally to discuss why foods and dietary patterns are more innocuous long term solution for ameliorating oxidative stress and therefore semen quality results and ART fertility outcomes. Since this is a narrative review and not a systematic/meta-analysis, the summarized information in the present study should be considered cautiously.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
Susan Yung ◽  
Tak Mao Chan

During peritoneal dialysis (PD), constant exposure of mesothelial cells to bioincompatible PD solutions results in the denudation of the mesothelial monolayer and impairment of mesothelial cell function. Hyaluronan, a major component of extracellular matrices, is synthesized by mesothelial cells and contributes to remesothelialization, maintenance of cell phenotype, and tissue remodeling and provides structural support to the peritoneal membrane. Chronic peritoneal inflammation is observed in long-term PD patients and is associated with increased hyaluronan synthesis. During inflammation, depolymerization of hyaluronan may occur with the generation of hyaluronan fragments. In contrast to native hyaluronan which offers a protective role to the peritoneum, hyaluronan fragments exacerbate inflammatory and fibrotic processes and therefore assist in the destruction of the tissue. This paper will discuss the contribution of mesothelial cells to peritoneal membrane alterations that are induced by PD and the putative role of hyaluronan in these processes.


2008 ◽  
pp. 253-260
Author(s):  
S Zunic-Bozinovski ◽  
Z Lausevic ◽  
S Krstic ◽  
N Jovanovic ◽  
J Trbojevic-Stankovic ◽  
...  

Peritoneal dialysis (PD) is a well established method of depuration in uremic patients. Standard dialysis solutions currently in use are not biocompatible with the peritoneal membrane. Studying effects of dialysate on peritoneal membrane in humans is still a challenge. There is no consensus on the ideal experimental model so far. We, therefore, wanted to develop a new experimental non-uremic rabbit model of peritoneal dialysis, which would be practical, easy to conduct, not too costly, and convenient to investigate the long-term effect of dialysis fluids. The study was done on 17 healthy Chinchilla male and female rabbits, anesthetized with Thiopental in a dose of 0.5 mg/kg body mass. A catheter, specially made from Tro-soluset (Troge Medical GMBH, Hamburg, Germany) infusion system, was then surgically inserted and tunneled from animals' abdomen to their neck. The planned experimental procedure was 4 weeks of peritoneal dialysate instillation. The presented non-uremic rabbit model of peritoneal dialysis is relatively inexpensive, does not require sophisticated technology and was well tolerated by the animals. Complications such as peritonitis, dialysis fluid leakage, constipation and catheter obstruction were negligible. This model is reproducible and can be used to analyze the effects of different dialysis solutions on the rabbit peritoneal membrane.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Janusz Witowski ◽  
Edyta Kawka ◽  
Andras Rudolf ◽  
Achim Jörres

Uraemia and long-term peritoneal dialysis (PD) can lead to fibrotic thickening of the peritoneal membrane, which may limit its dialytic function. Peritoneal fibrosis is associated with the appearance of myofibroblasts and expansion of extracellular matrix. The extent of contribution of resident peritoneal fibroblasts to these changes is a matter of debate. Recent studies point to a significant heterogeneity and complexity of the peritoneal fibroblast population. Here, we review recent developments in peritoneal fibroblast biology and summarize the current knowledge on the involvement of peritoneal fibroblasts in peritoneal inflammation and fibrosis.


2021 ◽  
Vol 22 (15) ◽  
pp. 7955
Author(s):  
Mario Bonomini ◽  
Valentina Masola ◽  
Giuseppe Procino ◽  
Victor Zammit ◽  
José C. Divino-Filho ◽  
...  

Peritoneal dialysis (PD) is an important, if underprescribed, modality for the treatment of patients with end-stage kidney disease. Among the barriers to its wider use are the deleterious effects of currently commercially available glucose-based PD solutions on the morphological integrity and function of the peritoneal membrane due to fibrosis. This is primarily driven by hyperglycaemia due to its effects, through multiple cytokine and transcription factor signalling—and their metabolic sequelae—on the synthesis of collagen and other extracellular membrane components. In this review, we outline these interactions and explore how novel PD solution formulations are aimed at utilizing this knowledge to minimise the complications associated with fibrosis, while maintaining adequate rates of ultrafiltration across the peritoneal membrane and preservation of patient urinary volumes. We discuss the development of a new generation of reduced-glucose PD solutions that employ a variety of osmotically active constituents and highlight the biochemical rationale underlying optimization of oxidative metabolism within the peritoneal membrane. They are aimed at achieving optimal clinical outcomes and improving the whole-body metabolic profile of patients, particularly those who are glucose-intolerant, insulin-resistant, or diabetic, and for whom daily exposure to high doses of glucose is contraindicated.


Sign in / Sign up

Export Citation Format

Share Document