scholarly journals Phosphorylation of the Regulators, a Complex Facet of NF-κB Signaling in Cancer

Biomolecules ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 15
Author(s):  
Aishat Motolani ◽  
Matthew Martin ◽  
Mengyao Sun ◽  
Tao Lu

The nuclear factor kappa B (NF-κB) is a ubiquitous transcription factor central to inflammation and various malignant diseases in humans. The regulation of NF-κB can be influenced by a myriad of post-translational modifications (PTMs), including phosphorylation, one of the most popular PTM formats in NF-κB signaling. The regulation by phosphorylation modification is not limited to NF-κB subunits, but it also encompasses the diverse regulators of NF-κB signaling. The differential site-specific phosphorylation of NF-κB itself or some NF-κB regulators can result in dysregulated NF-κB signaling, often culminating in events that induce cancer progression and other hyper NF-κB related diseases, such as inflammation, cardiovascular diseases, diabetes, as well as neurodegenerative diseases, etc. In this review, we discuss the regulatory role of phosphorylation in NF-κB signaling and the mechanisms through which they aid cancer progression. Additionally, we highlight some of the known and novel NF-κB regulators that are frequently subjected to phosphorylation. Finally, we provide some future perspectives in terms of drug development to target kinases that regulate NF-κB signaling for cancer therapeutic purposes.

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
O. Lorenzo ◽  
B. Picatoste ◽  
S. Ares-Carrasco ◽  
E. Ramírez ◽  
J. Egido ◽  
...  

Diabetic cardiomyopathy entails the cardiac injury induced by diabetes independently of any vascular disease or hypertension. Some transcription factors have been proposed to control the gene program involved in the setting and development of related processes. Nuclear factor-kappa B is a pleiotropic transcription factor associated to the regulation of many heart diseases. However, the nuclear factor-kappa B role in diabetic cardiomyopathy is under investigation. In this paper, we review the nuclear factor-kappa B pathway and its role in several processes that have been linked to diabetic cardiomyopathy, such as oxidative stress, inflammation, endothelial dysfunction, fibrosis, hypertrophy and apoptosis.


2000 ◽  
Vol 20 (3) ◽  
pp. 592-603 ◽  
Author(s):  
Diane Stephenson ◽  
Tinggui Yin ◽  
E. Barry Smalstig ◽  
Mei Ann Hsu ◽  
Jill Panetta ◽  
...  

Nuclear factor-kappa B (NF-kB) is a multisubunit transcription factor that when activated induces the expression of genes encoding acute-phase proteins, cell adhesion molecules, cell surface receptors, and cytokines. NF-kB is composed of a variety of protein subunits of which p50-and p65-kDa (RelA) are the most widely studied. Under resting conditions, these subunits reside in the cytoplasm as an inactive complex bound by inhibitor proteins, IkBα and IkBβ. On activation, IkB is phosphorylated by IkB kinase and ubiquitinated and degraded by the proteasome; simultaneously, the active heterodimer translocates to the nucleus where it can initiate gene transcription. In the periphery, NF-kB is involved in inflammation through stimulation of the production of inflammatory mediators. The role of NF-kB in the brain is unclear. In vitro, NF-kB activation can be either protective or deleterious. The role of NF-kB in ischemic neuronal cell death in vivo was investigated. Adult male rats were subjected to 2 hours of focal ischemia induced by middle cerebral artery occlusion (MCAO). At 2, 6, and 12 hours after reperfusion, the expression and transactivation of NF-kB in ischemic versus nonischemic cortex and striatum were determined by immunocytochemistry and by electrophoretic mobility gel-shift analysis. At all time points studied, p50 and p65 immunoreactivity was found exclusively in the nuclei of cortical and striatal neurons in the ischemic hemisphere. The contralateral nonischemic hemisphere showed no evidence of nuclear NF-kB immunoreactivity. Double immunofluorescence confirmed expression of p50 in nuclei of neurons. Increased NF-kB DNA-binding activity in nuclear extracts prepared from the ischemic hemisphere was further substantiated by electrophoretic mobility gel-shift analysis. Because the activation of NF-kB by many stimuli can be blocked by antioxidants in vitro, the effect of the antioxidant, LY341122, previously shown to be neuroprotective, on NF-kB activation in the MCAO model was evaluated. No significant activation of NF-kB was found by electrophoretic mobility gel-shift analysis in animals treated with LY341122. These results demonstrate that transient focal cerebral ischemia results in activation of NF-kB in neurons and supports previous observations that neuroprotective antioxidants may inhibit neuronal death by preventing the activation of NF-kB.


2001 ◽  
Vol 28 (6) ◽  
pp. 626-633 ◽  
Author(s):  
James R. Berenson ◽  
Hongjin M. Ma ◽  
Robert Vescio

Cells ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1335
Author(s):  
Marina Mostafizar ◽  
Claudia Cortes-Pérez ◽  
Wanda Snow ◽  
Jelena Djordjevic ◽  
Aida Adlimoghaddam ◽  
...  

The transcription factor nuclear factor kappa B (NF-κB) is highly expressed in almost all types of cells. NF-κB is involved in many complex biological processes, in particular in immunity. The activation of the NF-κB signaling pathways is also associated with cancer, diabetes, neurological disorders and even memory. Hence, NF-κB is a central factor for understanding not only fundamental biological presence but also pathogenesis, and has been the subject of intense study in these contexts. Under healthy physiological conditions, the NF-κB pathway promotes synapse growth and synaptic plasticity in neurons, while in glia, NF-κB signaling can promote pro-inflammatory responses to injury. In addition, NF-κB promotes the maintenance and maturation of B cells regulating gene expression in a majority of diverse signaling pathways. Given this, the protein plays a predominant role in activating the mammalian immune system, where NF-κB-regulated gene expression targets processes of inflammation and host defense. Thus, an understanding of the methodological issues around its detection for localization, quantification, and mechanistic insights should have a broad interest across the molecular neuroscience community. In this review, we summarize the available methods for the proper detection and analysis of NF-κB among various brain tissues, cell types, and subcellular compartments, using both qualitative and quantitative methods. We also summarize the flexibility and performance of these experimental methods for the detection of the protein, accurate quantification in different samples, and the experimental challenges in this regard, as well as suggestions to overcome common challenges.


2021 ◽  
Vol 22 (11) ◽  
pp. 5657
Author(s):  
Seounghun Lee ◽  
Hyo-Jung Shin ◽  
Chan Noh ◽  
Song-I Kim ◽  
Young-Kwon Ko ◽  
...  

Activation of nuclear factor-kappa B (NF-κB) in microglia plays a decisive role in the progress of neuropathic pain, and the inhibitor of kappa B (IκB) is a protein that blocks the activation of NF-κB and is degraded by the inhibitor of NF-κB kinase subunit beta (IKBKB). The role of IKBKB is to break down IκB, which blocks the activity of NF-kB. Therefore, it prevents the activity of NK-kB. This study investigated whether neuropathic pain can be reduced in spinal nerve ligation (SNL) rats by reducing the activity of microglia by delivering IKBKB small interfering RNA (siRNA)-encapsulated poly (lactic-co-glycolic acid) (PLGA) nanoparticles. PLGA nanoparticles, as a carrier for the delivery of IKBKB genes silencer, were used because they have shown potential to enhance microglial targeting. SNL rats were injected with IKBKB siRNA-encapsulated PLGA nanoparticles intrathecally for behavioral tests on pain response. IKBKB siRNA was delivered for suppressing the expression of IKBKB. In rats injected with IKBKB siRNA-encapsulated PLGA nanoparticles, allodynia caused by mechanical stimulation was reduced, and the secretion of pro-inflammatory mediators due to NF-κB was reduced. Delivering IKBKB siRNA through PLGA nanoparticles can effectively control the inflammatory response and is worth studying as a treatment for neuropathic pain.


Oral Diseases ◽  
2013 ◽  
Vol 20 (3) ◽  
pp. 294-300 ◽  
Author(s):  
T Arabaci ◽  
O Köse ◽  
A Kizildağ ◽  
M Albayrak ◽  
Y Çiçek ◽  
...  

Author(s):  
Jelena Damm ◽  
Joachim Roth ◽  
Rüdiger Gerstberger ◽  
Christoph Rummel

AbstractBackground:Studies with NF-IL6-deficient mice indicate that this transcription factor plays a dual role during systemic inflammation with pro- and anti-inflammatory capacities. Here, we aimed to characterize the role of NF-IL6 specifically within the brain.Methods:In this study, we tested the capacity of short interfering (si) RNA to silence the inflammatory transcription factor nuclear factor-interleukin 6 (NF-IL6) in brain cells underResults:In cells of a mixed neuronal and glial primary culture from the ratConclusions:This approach was, thus, not suitable to characterize the role NF-IL6 in the brain


Sign in / Sign up

Export Citation Format

Share Document