scholarly journals Jasmonates, Ethylene and Brassinosteroids Control Adventitious and Lateral Rooting as Stress Avoidance Responses to Heavy Metals and Metalloids

Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 77
Author(s):  
Camilla Betti ◽  
Federica Della Rovere ◽  
Diego Piacentini ◽  
Laura Fattorini ◽  
Giuseppina Falasca ◽  
...  

Developmental and environmental signaling networks often converge during plant growth in response to changing conditions. Stress-induced hormones, such as jasmonates (JAs), can influence growth by crosstalk with other signals like brassinosteroids (BRs) and ethylene (ET). Nevertheless, it is unclear how avoidance of an abiotic stress triggers local changes in development as a response. It is known that stress hormones like JAs/ET and BRs can regulate the division rate of cells from the first asymmetric cell divisions (ACDs) in meristems, suggesting that stem cell activation may take part in developmental changes as a stress-avoidance-induced response. The root system is a prime responder to stress conditions in soil. Together with the primary root and lateral roots (LRs), adventitious roots (ARs) are necessary for survival in numerous plant species. AR and LR formation is affected by soil pollution, causing substantial root architecture changes by either depressing or enhancing rooting as a stress avoidance/survival response. Here, a detailed overview of the crosstalk between JAs, ET, BRs, and the stress mediator nitric oxide (NO) in auxin-induced AR and LR formation, with/without cadmium and arsenic, is presented. Interactions essential in achieving a balance between growth and adaptation to Cd and As soil pollution to ensure survival are reviewed here in the model species Arabidopsis and rice.

2011 ◽  
Vol 279 (1733) ◽  
pp. 1560-1566 ◽  
Author(s):  
Lee Koren ◽  
Shinichi Nakagawa ◽  
Terry Burke ◽  
Kiran K. Soma ◽  
Katherine E. Wynne-Edwards ◽  
...  

Potential mechanistic mediators of Darwinian fitness, such as stress hormones or sex hormones, have been the focus of many studies. An inverse relationship between fitness and stress or sex hormone concentrations has been widely assumed, although empirical evidence is scarce. Feathers gradually accumulate hormones during their growth and provide a novel way to measure hormone concentrations integrated over time. Using liquid chromatography–tandem mass spectrometry, we measured testosterone, corticosterone and cortisol in the feathers of house sparrows ( Passer domesticus ) in a wild population which is the subject of a long-term study. Although corticosterone is considered the dominant avian glucocorticoid, we unambiguously identified cortisol in feathers. In addition, we found that feathers grown during the post-nuptial moult in autumn contained testosterone, corticosterone and cortisol levels that were significantly higher in birds that subsequently died over the following winter than in birds that survived. Thus, feather steroids are candidate prospective biomarkers to predict the future survival of individuals in the wild.


Author(s):  
Marek Šírl ◽  
Tereza Šnajdrová ◽  
Dolores Gutiérrez-Alanís ◽  
Joseph G. Dubrovsky ◽  
Jean Phillipe Vielle-Calzada ◽  
...  

The AT-HOOK MOTIF NUCLEAR LOCALIZED PROTEIN (AHL) gene family encodes embryophyte-specific nuclear proteins with DNA binding activity. They modulate gene expression and affect various developmental processes in plants. We identify AHL18 (At3G60870) as a developmental modulator of root system architecture and growth. AHL18 regulates the length of the proliferation domain and number of dividing cells in the root apical meristem and thereby, cell production. Both primary root growth and lateral root development respond according to AHL18 transcription level. The ahl18 knock-out plants show reduced root systems due to a shorter primary root and a lower number of lateral roots. This change results from a higher number of arrested and non-developing lateral root primordia (LRP) rather than from decreased initiation. Overexpression of AHL18 results in a more extensive root system, longer primary roots, and increased density of lateral root initiation events. Formation of lateral roots is affected during the initiation of LRP and later development. AHL18 regulate root apical meristem activity, lateral root initiation and emergence, which is in accord with localization of its expression.


2009 ◽  
Vol 27 (2) ◽  
pp. 99-104 ◽  
Author(s):  
Angela Hewitt ◽  
Gary Watson

Abstract Typical nursery production practices, such as root pruning and transplanting, can alter tree root architecture and contribute to root systems that are too deep. In a study of field-grown liner production, root architecture was examined at each stage of the production process, from first year seedlings or rooted cuttings, through 4 to 5 year old branched liners. Depth and diameter of structural roots were recorded on ten replications each of Acer saccharum, Gleditsia triancanthos, Pyrus calleryana, and apple seedling rootstocks; Platanus ‘Columbia’ clonal rooted cuttings; and apple EMLA 111 clonal rootstock produced by mound propagation. By the time the liners reached marketable size, most natural lateral roots emerging from the primary root were lost. Simultaneously, adventitious roots were produced deeper on the root shank at the pruned end of the primary root. These changes in architecture result in the formation of an ‘adventitious root flare’ that is deeper in the soil than a natural root flare. The depth of this new root flare is dependent upon nursery production practices and may influence the ultimate depth of structural roots in the landscape.


1963 ◽  
Vol 41 (5) ◽  
pp. 579-589 ◽  
Author(s):  
M. V. S. Raju ◽  
T. A. Steeves ◽  
R. T. Coupland

The significance of Euphorbia esula L. as a weed is related to its capacity to persist under adverse conditions and to its mode of reproduction. In both these properties, the root system plays an important role. The root system is initially established by seedlings. The seedling has a vigorous primary root with extensive longitudinal growth and considerable cambial activity. Such a root has been designated a "long" root. By contrast, the first lateral roots produced on the primary root have limited growth and no cambial activity. These roots have been termed "short" roots. Thus, the seedling exhibits a "heterorhizic" pattern. Lateral long roots also arise on the primary root of seedlings but their origin is delayed until cambial activity has begun. Such lateral long roots arise much earlier on seedlings growing in denuded areas than on those growing in areas covered by dense vegetation. The mature root system is described in terms of horizontal and vertical long roots, which make up the conspicuous framework of the system, and of the short roots which they produce. Long roots produce shoot-buds and the origin of these structures is delayed until cambial activity has started. Short roots do not give rise to shoot-buds. Cambial activity in long roots appears to be connected with bud production and its absence in short roots probably underlies their inability to produce buds.L'importance de Euphorbia esula L. comme mauvaise herbe est connexé a son capacité de persister dans les situations hostiles et à sa methode de reproduction. Dans ces deux caractéristiques, le système des racines a une signification profunde. Initialement le système des racines s'établit dans le semis. Le semis a une racine primaire très forte avec beaucoup de croissance longitudinale et avec une activité considérable du cambium. Une racine de cette espèce s'appelle une "longue" racine (long root). Par contre, les premières racines latérales que poussent sur la racine primaire ont croissance limité et aucun activité du cambium. Ces racines s'appellent les "courtes" racines (short roots). De cette façon, le semis montre un dessin "heterorhizique" (heterorhizic). Les longues racines latérales ont aussi leur origine sur la racine primaire du semis, mais l'origine est retardé jusqu'au commencement de l'activité du cambium. Les racines de cette espèce apparaissent beaucoup plus tôt sur les semis qui sont situés en terre sans autre végétation, que sur ceux qui sont situés au milieu des autres plantes. Le système adulte des racines se décrit sous forme des longues racines de l'espèce horizontale et verticale, lesquelles constituent la charpente bien visible du système, et des courtes racines que sont produites par les longues racines. Les longues racines produisent les bourgeons, mais l'origine des bourgeons est retardé jusqu'au commencement de l'activité du cambium dans les racines. Les courtes racines ne produisent pas les bourgeons. Il paraît que l'activité du cambium dans les longues racines soit corrélative avec l'initiation des bourgeons et l'absence du cambium dans les courtes racines explique probablement leur incapacité à produire les bourgeons.


Development ◽  
1996 ◽  
Vol 122 (6) ◽  
pp. 1811-1819 ◽  
Author(s):  
F.M. Carland ◽  
N.A. McHale

We have taken a genetic approach to understanding the mechanisms that control vascular patterning in the leaves of higher plants. Here we present the identification and characterization of the lop1 mutant of Arabidopsis which is defective in basipetal transport of IAA. Mutant leaf midveins show disoriented axial growth, and bifurcation into twin veins that are frequently rotated out of the normal dorsal/ventral axis of the leaf. Mutant plants also display abnormal patterns of cell expansion in the midrib cortex and in the epidermis of the elongation zone of lateral roots. Lateral roots show abnormal curvature during initiation, sometimes encircling the primary root prior to growth in a normal downward direction. Mutant seedlings have normal levels of free IAA, and appear normal in auxin perception, suggesting that transport is the primary lesion. The abnormalities in vascular development, lateral root initiation and patterns of cell expansion observed in the lop] mutant are consistent with a basic disruption in basipetal transport of IAA.


Author(s):  
A. Deryugina ◽  
P. Ignatiev ◽  
V. Metelin ◽  
A. Belov ◽  
V. Petrov

The possibility to use the laser interference microscopy in order to assess the RBCs morphology in normal state and in interaction with cortisol and adrenalin as stress hormones was studied. It was established that the laser interference microscopy represented an important instrument permitting to receive the information about physiological state of the RBCs as well as of the organism in the whole in extreme condition. New aspects of cortisol and adrenalin impact on the RBC morphology are defined


Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1722
Author(s):  
Lidiya Vysotskaya ◽  
Guzel Akhiyarova ◽  
Arina Feoktistova ◽  
Zarina Akhtyamova ◽  
Alla Korobova ◽  
...  

Although changes in root architecture in response to the environment can optimize mineral and water nutrient uptake, mechanisms regulating these changes are not well-understood. We investigated whether P deprivation effects on root development are mediated by abscisic acid (ABA) and its interactions with other hormones. The ABA-deficient barley mutant Az34 and its wild-type (WT) were grown in P-deprived and P-replete conditions, and hormones were measured in whole roots and root tips. Although P deprivation decreased growth in shoot mass similarly in both genotypes, only the WT increased primary root length and number of lateral roots. The effect was accompanied by ABA accumulation in root tips, a response not seen in Az34. Increased ABA in P-deprived WT was accompanied by decreased concentrations of cytokinin, an inhibitor of root extension. Furthermore, P-deficiency in the WT increased auxin concentration in whole root systems in association with increased root branching. In the ABA-deficient mutant, P-starvation failed to stimulate root elongation or promote branching, and there was no decline in cytokinin and no increase in auxin. The results demonstrate ABA’s ability to mediate in root growth responses to P starvation in barley, an effect linked to its effects on cytokinin and auxin concentrations.


2013 ◽  
Vol 168 (1) ◽  
pp. R13-R18 ◽  
Author(s):  
Géraldine Falgarone ◽  
Hassan M Heshmati ◽  
Régis Cohen ◽  
Gérard Reach

The role of stress in the pathophysiology of Graves' disease is suggested by several clinical observations, by recent advances in immunology and by better understanding of autoimmune diseases which provides new insights into potential effects of stress hormones on T helper cell imbalance involved in the pathogenesis of autoimmune diseases. Stress management should therefore be an important part of the treatment of Graves' disease, as stress reduction may improve the effect of therapy. However, this field still requires interventional data to support stress management in the treatment of Graves' disease.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Stamatis Gregoriou ◽  
Dafni Papafragkaki ◽  
George Kontochristopoulos ◽  
Eustathios Rallis ◽  
Dimitrios Kalogeromitros ◽  
...  

Alopecia areata, a disease of the hair follicles with multifactorial etiology and a strong component of autoimmune origin, has been extensively studied as far as the role of several cytokines is concerned. So far, IFN-, interleukins, TNF-, are cytokines that are well known to play a major role in the pathogenesis of the disease, while several studies have shown that many more pathways exist. Among them, MIG, IP-10, BAFF, HLA antigens, MIG, as well as stress hormones are implicated in disease onset and activity. Within the scope of this paper, the authors attempt to shed light upon the complexity of alopecia areata underlying mechanisms and indicate pathways that may suggest future treatments.


1991 ◽  
Vol 42 (1) ◽  
pp. 95
Author(s):  
BJ Atwell

Lupins (Lupinus angustifolius cvv. Yandee and 75A-258 and L. pilosus cv. P. 20957) and pea (Pisum sativum cv. Dundale) were grown in the field for 43 days on a solonized brown soil. Shoots of L. pilosus and peas grew most rapidly, while L. angustifolius cv. 75A-258 developed a relatively large root system. L. angustifolius cv. Yandee, a commercial lupin cultivar, was poorly adapted; shoot growth was restricted and roots ceased growing 36 days after sowing. The soil factors responsible for these widely differing responses were investigated. Once primary roots of L. angustifolius were 20-30 cm deep, root extension was slow or arrested. Indeed, primary root apices of Yandee were often necrotic in the soil below 20 cm. In contrast, roots proliferated rapidly in the surface 20 cm of the soil, particularly in 7SA-258, suggesting that factors in the deeper soil layers restricted root growth most severely. The vigorous growth of lateral roots of 75A-258 was reflected in a 2.6 fold greater total root length than for Yandee 43 days after sowing. Soil physical properties were not considered a likely explanation for these observations; soil water status and porosity were always favourable for root growth and root sections indicated that no cortical degradation, typical of O2 deficient roots, had occurred. Penetrometer resistance and root tip osmotic pressures suggested that poor root growth could not be ascribed simply to soil mechanical properties. The results suggest, by inference, that soil chemical factors could underlie the phenotypic responses observed.


Sign in / Sign up

Export Citation Format

Share Document