scholarly journals Consumption of Enriched Yogurt with PAF Inhibitors from Olive Pomace Affects the Major Enzymes of PAF Metabolism: A Randomized, Double Blind, Three Arm Trial

Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 801
Author(s):  
Maria Detopoulou ◽  
Agathi Ntzouvani ◽  
Filio Petsini ◽  
Labrini Gavriil ◽  
Εlizabeth Fragopoulou ◽  
...  

Platelet-activating factor (PAF), a proinflammatory lipid mediator, plays a crucial role in the formation of the atherosclerotic plaque. Therefore, the inhibition of endothelium inflammation by nutraceuticals, such as PAF inhibitors, is a promising alternative for preventing cardiovascular diseases. The aim of the present study was to evaluate the impact of a new functional yogurt enriched with PAF inhibitors of natural origin from olive oil by-products on PAF metabolism. Ninety-two apparently healthy, but mainly overweight volunteers (35–65 years) were randomly allocated into three groups by block-randomization. The activities of PAF’s biosynthetic and catabolic enzymes were measured, specifically two isoforms of acetyl-CoA:lyso-PAF acetyltransferase (LPCATs), cytidine 5′-diphospho-choline:1-alkyl-2-acetyl-sn-glycerol cholinephosphotransferase (PAF-CPT) and two isoforms of platelet activating factor acetylhydrolase in leucocytes (PAF-AH) and plasma (lipoprotein associated phospholipase-A2, LpPLA2). The intake of the enriched yogurt resulted in reduced PAF-CPT and LpPLA2 activities. No difference was observed in the activities of the two isoforms of lyso PAF-AT. In conclusion, intake of yogurt enriched in PAF inhibitors could favorably modulate PAF biosynthetic and catabolic pathways.

2020 ◽  
Vol 23 (10) ◽  
pp. 688-696
Author(s):  
Elika Esmaeilzadeh-Gharehdaghi ◽  
Ehsan Razmara ◽  
Amirreza Bitaraf ◽  
Ahmadreza Jamshidi ◽  
Mahdi Mahmoudi ◽  
...  

Background: Ankylosing spondylitis (AS; OMIM:106300) is a common complex inflammatory disease; in a previous study, we introduced a novel mutation in the RELN gene (OMIM: 600514) which was associated with AS. This study is designed to investigate the potential effect of RELN S2486G mutation on reelin secretion; additionally, we objected to evaluate the phospholipase A2 (PLA2G7) gene (OMIM: 601690) expression and platelet-activating factor-acetylhydrolase (PAF-AH) concentration as the downstream gene and the encoded protein. Methods: The impact of the S2486G on reelin protein secretion was investigated in CHO-K1 and HEK-293T cells by constructing wild-type and mutant plasmids. Besides, the possible effect of the mutation on expression and concentration of PLA2G7 and PAF-AH in THP1 cells was assessed by quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. The study was performed at Tarbiat Modares University, Tehran, Iran, from 2016 to 2018. Results: Our results showed that S2486G not only causes a significant reduction in reelin secretion in both HEK-293T and CHO-K1 cells, but also it leads to a significant reduction in PLA2G7 gene expression (P value < 0.001) and protein level of PAF-AH in THP-1 cells (P value < 0.003). Conclusion: The S2486G mutation in RELN can alter inflammatory and, to some extent, osteogenesis pathways mediated by reduced secretion of reelin and also reduced expression of the PLA2G7 gene.


Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 893
Author(s):  
Aleksander Hejna ◽  
Jerzy Korol ◽  
Paulina Kosmela ◽  
Anton Kuzmin ◽  
Adam Piasecki ◽  
...  

The present paper describes the application of two types of food-industry by-products, brewers’ spent grain (BSG), and coffee silverskin (ŁK) as promising alternatives for the conventional beech wood flour (WF) for wood–polymer composites. The main goal was to investigate the impact of partial and complete WF substitution by BSG and ŁK on the processing, structure, physicochemical, mechanical, and thermal properties of resulting composites. Such modifications enabled significant enhancement of the melt flowability, which could noticeably increase the processing throughput. Replacement of WF with BSG and ŁK improved the ductility of composites, which affected their strength however. Such an effect was attributed to the differences in chemical composition of fillers, particularly the presence of proteins and lipids, which acted as plasticizers. Composites containing food-industry by-products were also characterized by the lower thermal stability compared to conventional WF. Nevertheless, the onset of decomposition exceeding 215 °C guarantees a safe processing window for polyethylene-based materials.


1997 ◽  
Vol 161 ◽  
pp. 179-187
Author(s):  
Clifford N. Matthews ◽  
Rose A. Pesce-Rodriguez ◽  
Shirley A. Liebman

AbstractHydrogen cyanide polymers – heterogeneous solids ranging in color from yellow to orange to brown to black – may be among the organic macromolecules most readily formed within the Solar System. The non-volatile black crust of comet Halley, for example, as well as the extensive orangebrown streaks in the atmosphere of Jupiter, might consist largely of such polymers synthesized from HCN formed by photolysis of methane and ammonia, the color observed depending on the concentration of HCN involved. Laboratory studies of these ubiquitous compounds point to the presence of polyamidine structures synthesized directly from hydrogen cyanide. These would be converted by water to polypeptides which can be further hydrolyzed to α-amino acids. Black polymers and multimers with conjugated ladder structures derived from HCN could also be formed and might well be the source of the many nitrogen heterocycles, adenine included, observed after pyrolysis. The dark brown color arising from the impacts of comet P/Shoemaker-Levy 9 on Jupiter might therefore be mainly caused by the presence of HCN polymers, whether originally present, deposited by the impactor or synthesized directly from HCN. Spectroscopic detection of these predicted macromolecules and their hydrolytic and pyrolytic by-products would strengthen significantly the hypothesis that cyanide polymerization is a preferred pathway for prebiotic and extraterrestrial chemistry.


1998 ◽  
Vol 80 (09) ◽  
pp. 372-375 ◽  
Author(s):  
Hidemi Yoshida ◽  
Tadaatsu Imaizumi ◽  
Koji Fujimoto ◽  
Hiroyuki Itaya ◽  
Makoto Hiramoto ◽  
...  

SummaryPlatelet-activating factor (PAF) acetylhydrolase is an enzyme that inactivates PAF. Deficiency of this enzyme is caused by a missense mutation in the gene. We previously found a higher prevalence of this mutation in patients with ischemic stroke. This fact suggests that the mutation might enhance the risk for stroke through its association with hypertension. We have addressed this hypothesis by analyzing the prevalence of the mutation in hypertension. We studied 138 patients with essential hypertension, 99 patients with brain hemorrhage, and 270 healthy controls. Genomic DNA was analyzed for the mutant allele by the polymerase-chain reaction. The prevalence of the mutation was 29.3% (27.4% heterozygotes and 1.9% homozygotes) in controls and 36.2% in hypertensives and the difference was not significant. The prevalence in patients with brain hemorrhage was significantly higher than the control: 32.6% heterozygotes and 6.1% homozygotes (p <0.05). PAF acetylhydrolase deficiency may be a genetic risk factor for vascular diseases.


Sign in / Sign up

Export Citation Format

Share Document