scholarly journals DDR1 Affects Metabolic Reprogramming in Breast Cancer Cells by Cross-Talking to the Insulin/IGF System

Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 926
Author(s):  
Veronica Vella ◽  
Marika Giuliano ◽  
Maria Luisa Nicolosi ◽  
Maria Giovanna Majorana ◽  
Małgorzata Anna Marć ◽  
...  

The insulin receptor isoform A (IR-A), a dual receptor for insulin and IGF2, plays a role in breast cancer (BC) progression and metabolic reprogramming. Notably, discoidin domain receptor 1 (DDR1), a collagen receptor often dysregulated in cancer, is involved in a functional crosstalk and feed forward loop with both the IR-A and the insulin like growth factor receptor 1 (IGF1R). Here, we aimed at investigating whether DDR1 might affect BC cell metabolism by modulating the IGF1R and/or the IR. To this aim, we generated MCF7 BC cells engineered to stably overexpress either IGF2 (MCF7/IGF2) or the IR-A (MCF7/IR-A). In both cell models, we observed that DDR1 silencing induced a significant decrease of total ATP production, particularly affecting the rate of mitochondrial ATP production. We also observed the downregulation of key molecules implicated in both glycolysis and oxidative phosphorylation. These metabolic changes were not modulated by DDR1 binding to collagen and occurred in part in the absence of IR/IGF1R phosphorylation. DDR1 silencing was ineffective in MCF7 knocked out for DDR1. Taken together, these results indicate that DDR1, acting in part independently of IR / IGF1R stimulation, might work as a novel regulator of BC metabolism and should be considered as putative target for therapy in BC.

2021 ◽  
Author(s):  
Termeh Shakery ◽  
Fatemeh Safari

Breast cancer (BC) is one of the most causes of cancer-related death among women worldwide. Cancer therapy based on stem cells was considered as a novel and promising platform. In present study, we explored the therapeutic effects of human amniotic mesenchymal stromal cells (hAMSCs) through Pinkbar (planar intestinal-and kidney-specific BAR domain protein), pAKT, and matrix metalloproteinases including MMP2, MMP9 on MDA-MB-231 breast cancer cells. To do so, we employed a co-culture system using 6 well plates transwell with a diameter of 0.4 μm pore sized. After 72h hAMSCs-treated MDA-MB-231 breast cancer cells, the expression of Epidermal growth factor receptor (EGFR), and c-Src (a key mediator in EGFR signaling pathway), Pinkbar, pAKT, MMP2, and MMP9 was analyzed by using quantitative real time PCR (qRT-PCR) and western blot methods. Based on using 2D and 3D cell culture models, the significant reduction of tumor cell growth and motility through down regulation of EGFR, c-Src, Pinkbar, pAKT, MMP2, and MMP9 in MDA-MB-231 breast cancer cells was shown. Also, the induction of cellular apoptosis also found. Our finding indicates that the hAMSCS secretome has therapeutic effects on cancer cells. To identify the details of the molecular mechanisms, more experiments will be required.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Jones Gyamfi ◽  
Joo Hye Yeo ◽  
Doru Kwon ◽  
Byung Soh Min ◽  
Yoon Jin Cha ◽  
...  

AbstractAdipocytes influence breast cancer behaviour via fatty acid release into the tumour microenvironment. Co-culturing human adipocytes and breast cancer cells increased CD36 expression, with fatty acid import into breast cancer cells. Genetic ablation of CD36 attenuates adipocyte-induced epithelial-mesenchymal transition (EMT) and stemness. We show a feedforward loop between CD36 and STAT3; where CD36 activates STAT3 signalling and STAT3 binds to the CD36 promoter, regulating its expression. CD36 expression results in metabolic reprogramming, with a shift towards fatty acid oxidation. CD36 inhibition induces de novo lipogenesis in breast cancer cells. Increased CD36 expression occurs with increased FABP4 expression. We showed that CD36 directly interacts with FABP4 to regulate fatty acid import, transport, and metabolism. CD36 and FABP4 inhibition induces apoptosis in tumour cells. These results indicate that CD36 mediates fatty acid import from adipocytes into cancer cells and activates signalling pathways that drive tumour progression. Targeting CD36 may have a potential for therapy, which will target the tumour microenvironment.


Sign in / Sign up

Export Citation Format

Share Document