scholarly journals Ligands of Adrenergic Receptors: A Structural Point of View

Biomolecules ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 936
Author(s):  
Yiran Wu ◽  
Liting Zeng ◽  
Suwen Zhao

Adrenergic receptors are G protein-coupled receptors for epinephrine and norepinephrine. They are targets of many drugs for various conditions, including treatment of hypertension, hypotension, and asthma. Adrenergic receptors are intensively studied in structural biology, displayed for binding poses of different types of ligands. Here, we summarized molecular mechanisms of ligand recognition and receptor activation exhibited by structure. We also reviewed recent advances in structure-based ligand discovery against adrenergic receptors.

2007 ◽  
Vol 35 (4) ◽  
pp. 755-759 ◽  
Author(s):  
E. Wise ◽  
J.E. Pease

Chemokines are a family of small basic proteins which induce the directed migration of cells, notably leucocytes, by binding to specific GPCRs (G-protein-coupled receptors). Both chemokines and their receptors have been implicated in a host of clinically important diseases, leading to the notion that antagonism of the chemokine–chemokine receptor network may be therapeutically advantageous. Consequently, considerable effort has been put into the development of small-molecule antagonists of chemokine receptors and several such compounds have been described in the literature. One curious by-product of this activity has been the description of several small-molecule agonists of the receptors, which are typically discovered following the optimization of lead antagonists. In this review we discuss these findings and conclude that these small-molecule agonists might be exploited to further our understanding of the molecular mechanisms by which chemokine receptors are activated.


2004 ◽  
Vol 32 (5) ◽  
pp. 871-872 ◽  
Author(s):  
V. Binet ◽  
C. Goudet ◽  
C. Brajon ◽  
L. Le Corre ◽  
F. Acher ◽  
...  

The GABAB (γ-aminobutyric acid-B) receptor is composed of two subunits, GABAB1 and GABAB2. Both subunits share structural homology with other class-III G-protein-coupled receptors. They contain two main domains, a heptahelical domain typical of all G-protein-coupled receptors and a large ECD (extracellular domain). It has not been demonstrated whether the association of these two subunits is always required for function. However, GABAB2 plays a major role in coupling with G-proteins, and GABAB1 has been shown to bind GABA. To date, only ligands interacting with GABAB1-ECD have been identified. In the present study, we explored the mechanism of action of CGP7930, a compound described as a positive allosteric regulator of the GABAB receptor. We have shown that it can weakly activate the wild-type GABAB receptor, but also the GABAB2 expressed alone, thus being the first described agonist of GABAB2. CGP7930 retains its weak agonist activity on a GABAB2 subunit deleted of its ECD. Thus the heptahelical domain of GABAB2 behaves similar to a rhodopsin-like receptor. These results open new strategies for studying the mechanism of activation of GABAB receptor and examine any possible role of GABAB2.


2020 ◽  
Vol 11 ◽  
Author(s):  
Raise Ahmad ◽  
Julie E. Dalziel

Heterotrimeric G protein-coupled receptors (GPCRs) comprise the largest receptor family in mammals and are responsible for the regulation of most physiological functions. Besides mediating the sensory modalities of olfaction and vision, GPCRs also transduce signals for three basic taste qualities of sweet, umami (savory taste), and bitter, as well as the flavor sensation kokumi. Taste GPCRs reside in specialised taste receptor cells (TRCs) within taste buds. Type I taste GPCRs (TAS1R) form heterodimeric complexes that function as sweet (TAS1R2/TAS1R3) or umami (TAS1R1/TAS1R3) taste receptors, whereas Type II are monomeric bitter taste receptors or kokumi/calcium-sensing receptors. Sweet, umami and kokumi receptors share structural similarities in containing multiple agonist binding sites with pronounced selectivity while most bitter receptors contain a single binding site that is broadly tuned to a diverse array of bitter ligands in a non-selective manner. Tastant binding to the receptor activates downstream secondary messenger pathways leading to depolarization and increased intracellular calcium in TRCs, that in turn innervate the gustatory cortex in the brain. Despite recent advances in our understanding of the relationship between agonist binding and the conformational changes required for receptor activation, several major challenges and questions remain in taste GPCR biology that are discussed in the present review. In recent years, intensive integrative approaches combining heterologous expression, mutagenesis and homology modeling have together provided insight regarding agonist binding site locations and molecular mechanisms of orthosteric and allosteric modulation. In addition, studies based on transgenic mice, utilizing either global or conditional knock out strategies have provided insights to taste receptor signal transduction mechanisms and their roles in physiology. However, the need for more functional studies in a physiological context is apparent and would be enhanced by a crystallized structure of taste receptors for a more complete picture of their pharmacological mechanisms.


Physiology ◽  
2013 ◽  
Vol 28 (4) ◽  
pp. 254-261 ◽  
Author(s):  
Friedrich C. Luft

Stimulating antibodies against G-protein-coupled receptors, including the β1- and β2-adrenergic receptors, the α1-adrenergic receptor, and the angiotensin II AT1 receptor, have been described, as well as activating antibodies directed at the platelet-derived growth factor receptor tyrosine kinase. Their existence and actions appear to be established. Lacking are mechanistic studies of receptor activation and translational studies to document receptor-stimulating antibodies as worthwhile therapeutic targets.


2007 ◽  
Vol 35 (4) ◽  
pp. 724-728 ◽  
Author(s):  
I. Langer ◽  
P. Robberecht

An actual paradigm for activation and regulation of the GPCR (G-protein-coupled receptors)/seven-transmembrane helix family of receptors essentially emerges from extensive studies of the largest family of receptors, the GPCR-A/rhodopsin family. The mechanisms regulating the GPCR-B family signal transduction are less precisely understood due in part to the lack of the conserved signatures of the GPCR-A family (E/DRY, NPXXY) and in part to the absence of a reliable receptor modelling, although some studies suggest that both families share similar features. Here, we try to highlight the current knowledge of the activation and the regulation of the VIP (vasoactive intestinal peptide) receptors, namely VPAC (VIP/pituitary adenylate cyclase-activating peptide receptor) 1 and 2. This includes search for amino acids involved in the stabilization of the receptor active conformation and in coupling to G-proteins, signalling pathways activated in response to VIP, agonist-dependent receptor down-regulation, phosphorylation and internalization as well as pharmacological consequences of receptor hetero-dimerization.


Author(s):  
Edda S. F. Matthees ◽  
Raphael S. Haider ◽  
Carsten Hoffmann ◽  
Julia Drube

G protein-coupled receptors (GPCRs) comprise the largest family of transmembrane receptors and their signal transduction is tightly regulated by GPCR kinases (GRKs) and β-arrestins. In this review, we discuss novel aspects of the regulatory GRK/β-arrestin system. Therefore, we briefly revise the origin of the “barcode” hypothesis for GPCR/β-arrestin interactions, which states that β-arrestins recognize different receptor phosphorylation states to induce specific functions. We emphasize two important parameters which may influence resulting GPCR phosphorylation patterns: (A) direct GPCR–GRK interactions and (B) tissue-specific expression and availability of GRKs and β-arrestins. In most studies that focus on the molecular mechanisms of GPCR regulation, these expression profiles are underappreciated. Hence we analyzed expression data for GRKs and β-arrestins in 61 tissues annotated in the Human Protein Atlas. We present our analysis in the context of pathophysiological dysregulation of the GPCR/GRK/β-arrestin system. This tissue-specific point of view might be the key to unraveling the individual impact of different GRK isoforms on GPCR regulation.


2020 ◽  
Vol 20 (6) ◽  
pp. 444-465 ◽  
Author(s):  
Jessica Ceramella ◽  
Domenico Iacopetta ◽  
Alexia Barbarossa ◽  
Anna Caruso ◽  
Fedora Grande ◽  
...  

Protein Kinases (PKs) are a heterogeneous family of enzymes that modulate several biological pathways, including cell division, cytoskeletal rearrangement, differentiation and apoptosis. In particular, due to their crucial role during human tumorigenesis and cancer progression, PKs are ideal targets for the design and development of effective and low toxic chemotherapeutics and represent the second group of drug targets after G-protein-coupled receptors. Nowadays, several compounds have been claimed to be PKs inhibitors, and some of them, such as imatinib, erlotinib and gefitinib, have already been approved for clinical use, whereas more than 30 others are in various phases of clinical trials. Among them, some natural or synthetic carbazole-based molecules represent promising PKs inhibitors due to their capability to interfere with PK activity by different mechanisms of action including the ability to act as DNA intercalating agents, interfere with the activity of enzymes involved in DNA duplication, such as topoisomerases and telomerases, and inhibit other proteins such as cyclindependent kinases or antagonize estrogen receptors. Thus, carbazoles can be considered a promising this class of compounds to be adopted in targeted therapy of different types of cancer.


2006 ◽  
Vol 84 (3-4) ◽  
pp. 287-297 ◽  
Author(s):  
Fernand Gobeil ◽  
Audrey Fortier ◽  
Tang Zhu ◽  
Michela Bossolasco ◽  
Martin Leduc ◽  
...  

G-protein-coupled receptors (GPCRs) comprise a wide family of monomeric heptahelical glycoproteins that recognize a broad array of extracellular mediators including cationic amines, lipids, peptides, proteins, and sensory agents. Thus far, much attention has been given towards the comprehension of intracellular signaling mechanisms activated by cell membrane GPCRs, which convert extracellular hormonal stimuli into acute, non-genomic (e.g., hormone secretion, muscle contraction, and cell metabolism) and delayed, genomic biological responses (e.g., cell division, proliferation, and apoptosis). However, with respect to the latter response, there is compelling evidence for a novel intracrine mode of genomic regulation by GPCRs that implies either the endocytosis and nuclear translocation of peripheral-liganded GPCR and (or) the activation of nuclearly located GPCR by endogenously produced, nonsecreted ligands. A noteworthy example of the last scenario is given by heptahelical receptors that are activated by bioactive lipoids (e.g., PGE2 and PAF), many of which may be formed from bilayer membranes including those of the nucleus. The experimental evidence for the nuclear localization and signalling of GPCRs will be reviewed. We will also discuss possible molecular mechanisms responsible for the atypical compartmentalization of GPCRs at the cell nucleus, along with their role in gene expression.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Haruka Aoki ◽  
Chihiro Mogi ◽  
Fumikazu Okajima

An acidic microenvironment has been shown to evoke a variety of airway responses, including cough, bronchoconstriction, airway hyperresponsiveness (AHR), infiltration of inflammatory cells in the lung, and stimulation of mucus hyperproduction. Except for the participation of transient receptor potential vanilloid-1 (TRPV1) and acid-sensing ion channels (ASICs) in severe acidic pH (of less than 6.0)-induced cough and bronchoconstriction through sensory neurons, the molecular mechanisms underlying extracellular acidic pH-induced actions in the airways have not been fully understood. Recent studies have revealed that ovarian cancer G protein-coupled receptor 1 (OGR1)-family G protein-coupled receptors, which sense pH of more than 6.0, are expressed in structural cells, such as airway smooth muscle cells and epithelial cells, and in inflammatory and immune cells, such as eosinophils and dendritic cells. They function in a variety of airway responses related to the pathophysiology of inflammatory diseases, including allergic asthma. In the present review, we discuss the roles of ionotropic TRPV1 and ASICs and metabotropic OGR1-family G protein-coupled receptors in the airway inflammation and AHR in asthma and respiratory diseases.


Sign in / Sign up

Export Citation Format

Share Document