scholarly journals A Structural and Dynamic Analysis of the Partially Disordered Polymerase-Binding Domain in RSV Phosphoprotein

Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1225
Author(s):  
Christophe Cardone ◽  
Claire-Marie Caseau ◽  
Benjamin Bardiaux ◽  
Aurélien Thureaux ◽  
Marie Galloux ◽  
...  

The phosphoprotein P of Mononegavirales (MNV) is an essential co-factor of the viral RNA polymerase L. Its prime function is to recruit L to the ribonucleocapsid composed of the viral genome encapsidated by the nucleoprotein N. MNV phosphoproteins often contain a high degree of disorder. In Pneumoviridae phosphoproteins, the only domain with well-defined structure is a small oligomerization domain (POD). We previously characterized the differential disorder in respiratory syncytial virus (RSV) phosphoprotein by NMR. We showed that outside of RSV POD, the intrinsically disordered N-and C-terminal regions displayed a structural and dynamic diversity ranging from random coil to high helical propensity. Here we provide additional insight into the dynamic behavior of PCα, a domain that is C-terminal to POD and constitutes the RSV L-binding region together with POD. By using small phosphoprotein fragments centered on or adjacent to POD, we obtained a structural picture of the POD–PCα region in solution, at the single residue level by NMR and at lower resolution by complementary biophysical methods. We probed POD–PCα inter-domain contacts and showed that small molecules were able to modify the dynamics of PCα. These structural properties are fundamental to the peculiar binding mode of RSV phosphoprotein to L, where each of the four protomers binds to L in a different way.

Proceedings ◽  
2020 ◽  
Vol 50 (1) ◽  
pp. 115
Author(s):  
Jason S. McLellan

Numerous interventions are currently in the process of clinical development for respiratory syncytial virus (RSV) infection, including the use of small molecules that target viral transcription and replication. These processes are catalyzed by a complex comprising the RNA-dependent RNA polymerase (L) and the tetrameric phosphoprotein (P). The RSV P performs many functions, including the recruitment of viral proteins to the polymerase complex. Despite their critical roles in RSV transcription and replication, the structures of L and P have remained elusive, though RSV P is thought to be intrinsically disordered in solution, with the exception of its oligomerization domain. Here, we describe the 3.2 Å cryo-EM structure of RSV L bound to the tetrameric P. The structure reveals a striking tentacular arrangement of P in which each of the four monomers adopts a distinct conformation. The structure also provides a rationale for the inhibitor-escape mutants and mutations observed in live attenuated vaccine candidates. These results provide a framework for determining the molecular underpinnings of RSV replication and transcription and should facilitate the design of effective RSV inhibitors.


PLoS ONE ◽  
2016 ◽  
Vol 11 (12) ◽  
pp. e0167763 ◽  
Author(s):  
Michele D. Kattke ◽  
Albert H. Chan ◽  
Andrew Duong ◽  
Danielle L. Sexton ◽  
Michael R. Sawaya ◽  
...  

2007 ◽  
Vol 7 (3) ◽  
pp. 42-62 ◽  
Author(s):  
Ingvild Andreassen Sæverud ◽  
Jon Birger Skjærseth

This article examines major oil companies in terms of climate strategies and their implementation. More specifıcally, it takes a critical look at Shell, BP, and ExxonMobil, and the relationship between rhetoric and action regarding investments in climate-friendly activities. Empirical evidence indicates a generally high degree of consistency between what these companies say and what they do, but interesting differences are also found: ExxonMobil has done somewhat more than its climate strategy formulations would suggest; Shell has done somewhat less; whereas BP's activities are mainly in line with its statements. Factors at three levels contribute to explaining these differences: (1) the company level, 2) the political framework conditions in the various regions where the companies operate, 3) international climate cooperation. The fındings and explanations, although restricted to the three oil companies with regard to climate change, provide insight into the relationship between corporate strategies and implementation more generally. They offer understanding and analytical categories for assessing how well and why such multinational entities put into practice stated objectives.


Author(s):  
Liesbeth Plateau

This contribution presents an introductory analysis of one of the key players of the socalled“stenciled revolution” in Flanders in the nineteen sixties. Before concepts likeprovo distressed the entire societal and cultural life in the Netherlands, certain phenomenain Flanders anticipated to this. From 1963, small stenciled magazines shot up likemushrooms in the Flemish literary field. Due to their aggressive stand against the literaryestablishment, the critics quickly caught sight of them and engaged in an energeticpolemic. Because of their involvement in the literary polemics, the stenciled magazinesshortly determined the literary life to a high degree. However, partly due to their complexhistory and short life span, a systematic investigation of this phenomenon has not yet beenconducted. Nevertheless, the underground- magazines of the “stenciled revolution” are invarious ways relevant to a renewed literary history, as they explore both the literary-criticaland the creative-literary boundaries of the traditional contrast between literature andnon-literature. In this article, I focus on one of the most creative-literary oriented of theseFlemish stenciled magazines, namely daele (1966-1968), to gain an insight into the identityof the “stenciled revolution”.


2006 ◽  
Vol 26 (17) ◽  
pp. 6675-6689 ◽  
Author(s):  
Judith Lopes ◽  
Cyril Ribeyre ◽  
Alain Nicolas

ABSTRACT Genomes contain tandem repeat blocks that are at risk of expansion or contraction. The mechanisms of destabilization of the human minisatellite CEB1 (arrays of 36- to 43-bp repeats) were investigated in a previously developed model system, in which CEB1-0.6 (14 repeats) and CEB1-1.8 (42 repeats) alleles were inserted into the genome of Saccharomyces cerevisiae. As in human cells, CEB1 is stable in mitotically growing yeast cells but is frequently rearranged in the absence of the Rad27/hFEN1 protein involved in Okazaki fragments maturation. To gain insight into this mode of destabilization, the CEB1-1.8 and CEB1-0.6 human alleles and 47 rearrangements derived from a CEB1-1.8 progenitor in rad27Δ cells were sequenced. A high degree of polymorphism of CEB1 internal repeats was observed, attesting to a large variety of homology-driven rearrangements. Simple deletion, double deletion, and highly complex events were observed. Pedigree analysis showed that all rearrangements, even the most complex, occurred in a single generation and were inherited equally by mother and daughter cells. Finally, the rearrangement frequency was found to increase with array size, and partial complementation of the rad27Δ mutation by hFEN1 demonstrated that the production of novel CEB1 alleles is Rad52 and Rad51 dependent. Instability can be explained by an accumulation of unresolved flap structures during replication, leading to the formation of recombinogenic lesions and faulty repair, best understood by homology-dependent synthesis-strand displacement and annealing.


2017 ◽  
Vol 45 (3) ◽  
pp. 741-750 ◽  
Author(s):  
Sjoerd J. van Deventer ◽  
Vera-Marie E. Dunlock ◽  
Annemiek B. van Spriel

To facilitate the myriad of different (signaling) processes that take place at the plasma membrane, cells depend on a high degree of membrane protein organization. Important mediators of this organization are tetraspanin proteins. Tetraspanins interact laterally among themselves and with partner proteins to control the spatial organization of membrane proteins in large networks called the tetraspanin web. The molecular interactions underlying the formation of the tetraspanin web were hitherto mainly described based on their resistance to different detergents, a classification which does not necessarily correlate with functionality in the living cell. To look at these interactions from a more physiological point of view, this review discusses tetraspanin interactions based on their function in the tetraspanin web: (1) intramolecular interactions supporting tetraspanin structure, (2) tetraspanin–tetraspanin interactions supporting web formation, (3) tetraspanin–partner interactions adding functional partners to the web and (4) cytosolic tetraspanin interactions regulating intracellular signaling. The recent publication of the first full-length tetraspanin crystal structure sheds new light on both the intra- and intermolecular tetraspanin interactions that shape the tetraspanin web. Furthermore, recent molecular dynamic modeling studies indicate that the binding strength between tetraspanins and between tetraspanins and their partners is the complex sum of both promiscuous and specific interactions. A deeper insight into this complex mixture of interactions is essential to our fundamental understanding of the tetraspanin web and its dynamics which constitute a basic building block of the cell surface.


2019 ◽  
Vol 10 (46) ◽  
pp. 10789-10801 ◽  
Author(s):  
Jonas Lategahn ◽  
Marina Keul ◽  
Philip Klövekorn ◽  
Hannah L. Tumbrink ◽  
Janina Niggenaber ◽  
...  

We present inhibitors of drug resistant mutants of EGFR including T790M and C797S. In addition, we present the first X-ray crystal structures of covalent inhibitors in complex with C797S-mutated EGFR to gain insight into their binding mode.


2019 ◽  
Vol 73 (12) ◽  
pp. 713-725 ◽  
Author(s):  
Ruth Hendus-Altenburger ◽  
Catarina B. Fernandes ◽  
Katrine Bugge ◽  
Micha B. A. Kunze ◽  
Wouter Boomsma ◽  
...  

Abstract Phosphorylation is one of the main regulators of cellular signaling typically occurring in flexible parts of folded proteins and in intrinsically disordered regions. It can have distinct effects on the chemical environment as well as on the structural properties near the modification site. Secondary chemical shift analysis is the main NMR method for detection of transiently formed secondary structure in intrinsically disordered proteins (IDPs) and the reliability of the analysis depends on an appropriate choice of random coil model. Random coil chemical shifts and sequence correction factors were previously determined for an Ac-QQXQQ-NH2-peptide series with X being any of the 20 common amino acids. However, a matching dataset on the phosphorylated states has so far only been incompletely determined or determined only at a single pH value. Here we extend the database by the addition of the random coil chemical shifts of the phosphorylated states of serine, threonine and tyrosine measured over a range of pH values covering the pKas of the phosphates and at several temperatures (www.bio.ku.dk/sbinlab/randomcoil). The combined results allow for accurate random coil chemical shift determination of phosphorylated regions at any pH and temperature, minimizing systematic biases of the secondary chemical shifts. Comparison of chemical shifts using random coil sets with and without inclusion of the phosphoryl group, revealed under/over estimations of helicity of up to 33%. The expanded set of random coil values will improve the reliability in detection and quantification of transient secondary structure in phosphorylation-modified IDPs.


2019 ◽  
Vol 295 (3) ◽  
pp. 883-895 ◽  
Author(s):  
Yunrong Gao ◽  
Dongdong Cao ◽  
Hyunjun Max Ahn ◽  
Anshuman Swain ◽  
Shaylan Hill ◽  
...  

The templates for transcription and replication by respiratory syncytial virus (RSV) polymerase are helical nucleocapsids (NCs), formed by viral RNAs that are encapsidated by the nucleoprotein (N). Proper NC assembly is vital for RSV polymerase to engage the RNA template for RNA synthesis. Previous studies of NCs or nucleocapsid-like particles (NCLPs) from RSV and other nonsegmented negative-sense RNA viruses have provided insights into the overall NC architecture. However, in these studies, the RNAs were either random cellular RNAs or average viral genomic RNAs. An in-depth mechanistic understanding of NCs has been hampered by lack of an in vitro assay that can track NC or NCLP assembly. Here we established a protocol to obtain RNA-free N protein (N0) and successfully demonstrated the utility of a new assay for tracking assembly of N with RNA oligonucleotides into NCLPs. We discovered that the efficiency of the NCLP (N–RNA) assembly depends on the length and sequence of the RNA incorporated into NCLPs. This work provides a framework to generate purified N0 and incorporate it with RNA into NCLPs in a controllable manner. We anticipate that our assay for in vitro trackable assembly of RSV-specific nucleocapsids may enable in-depth mechanistic analyses of this process.


Sign in / Sign up

Export Citation Format

Share Document