scholarly journals High Intrinsic Aerobic Capacity Protects against Ethanol-Induced Hepatic Injury and Metabolic Dysfunction: Study Using High Capacity Runner Rat Model

Biomolecules ◽  
2015 ◽  
Vol 5 (4) ◽  
pp. 3295-3308 ◽  
Author(s):  
Nicholas Szary ◽  
R. Rector ◽  
Grace Uptergrove ◽  
Suzanne Ridenhour ◽  
Shivendra Shukla ◽  
...  
Author(s):  
Li Gan ◽  
Xiaonan Wan ◽  
Delin Ma ◽  
Fu-Chen Yang ◽  
Jingpeng Zhu ◽  
...  

Background: Aerobic capacity is associated with metabolic, cardiovascular, and neurological health. Low-capacity runner (LCR) rats display low aerobic capacity, metabolic dysfuction, and spatial memory deficits. A heat treatment (HT) can improve metabolic dysfunction in LCR peripheral organs after high fat diet (HFD). Little is known about metabolic changes in the brains of these rats following HT. Objective: Our objective was to examine the extent to which high or low aerobic capacity impacts Akt (a protein marker of metabolism) and heat shock protein 72 (HSP72, a marker of heat shock response) after HFD and HT in hippocampus. Methods: We measured phosphorylated Akt (pAkt) in the striatum and hippocampus, and HSP72 in the hippocampus, of HFD-fed and chow-fed LCR and high-capacity runner (HCR) rats with and without HT. Results: pAkt was lower in the hippocampus of chow-fed LCR than HCR rats. HFD resulted in greater pAkt in LCR but not HCR rats, but HT resulted in lower pAkt in the LCR HFD group. HSP72 was greater in both HCR and LCR rat hippocampus after HT. The HFD blunted this effect in LCR compared to HCR hippocampus. Conclusion: The abnormal phosphorylation of Akt and diminished HSP response in the hippocampus of young adult LCR rats might indicate early vulnerability to metabolic challenges in this key brain region associated with learning and memory.


2021 ◽  
Author(s):  
Carsten T. Herz ◽  
Johanna M. Brix ◽  
Bernhard Ludvik ◽  
Guntram Schernthaner ◽  
Gerit-Holger Schernthaner

Abstract Purpose Dipeptidyl peptidase 4 (DPP4) is expressed and secreted by adipocytes. DPP4 induces insulin resistance independently of its effect on glucagon-like peptide 1, thus it is conceivable that DPP4 directly contributes to metabolic dysfunction in patients with morbid obesity. The aim of this study was to investigate the impact of weight loss induced by bariatric surgery on DPP4 activity, and whether these changes are associated with improvements in markers of metabolic dysfunction and fatty liver disease. Materials and Methods We included 68 non-diabetic patients who underwent bariatric surgery. Serum DPP4 activity was measured using a fluorogenic substrate before and after surgery. Results Results: After a median follow-up period of 12 (IQR 11-17) months, median serum DPP4 activity decreased from 230 (IQR: 194-273) to 193 (164-252) pmol/min (p=0.012). The decrease in DPP4 activity was significantly correlated with decreases in BMI, improved cholesterol levels, reduced hepatic injury markers as well as improved post-prandial insulin sensitivity. After multivariable adjustment, ΔDPP4 activity remained significantly associated with Δcholesterol (beta=0.341, p=0.025), ΔLDL cholesterol (beta=0.350, p=0.019), Δgamma-glutamyltransferase (beta=0.323, p=0.040) and ΔMatsuda index (beta=-0.386, p=0.045). Conclusion We demonstrated that weight loss induced by bariatric surgery results in decreased circulating DPP4 activity beyond the initial phase of weight loss. The associations between decreased DPP4 activity and improved cholesterol levels as well as hepatic injury markers point towards pleiotropic effects of DPP4 beyond glucose metabolism which warrant further investigation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Muhammad Shoaib ◽  
Rishabh C. Choudhary ◽  
Jaewoo Choi ◽  
Nancy Kim ◽  
Kei Hayashida ◽  
...  

AbstractCardiac arrest (CA) is a leading cause of death and there is a necessity for animal models that accurately represent human injury severity. We evaluated a rat model of severe CA injury by comparing plasma metabolic alterations to human patients. Plasma was obtained from adult human control and CA patients post-resuscitation, and from male Sprague–Dawley rats at baseline and after 20 min CA followed by 30 min cardiopulmonary bypass resuscitation. An untargeted metabolomics evaluation using UPLC-QTOF-MS/MS was performed for plasma metabolome comparison. Here we show the metabolic commonality between humans and our severe injury rat model, highlighting significant metabolic dysfunction as seen by similar alterations in (1) TCA cycle metabolites, (2) tryptophan and kynurenic acid metabolites, and (3) acylcarnitine, fatty acid, and phospholipid metabolites. With substantial interspecies metabolic similarity in post-resuscitation plasma, our long duration CA rat model metabolically replicates human disease and is a suitable model for translational CA research.


1981 ◽  
Vol 80 (4) ◽  
pp. 647-654 ◽  
Author(s):  
Andrew Tanner ◽  
Abdol Keyhani ◽  
Rick Reiner ◽  
Greg Holdstock ◽  
Ralph Wright

PLoS ONE ◽  
2013 ◽  
Vol 8 (6) ◽  
pp. e66636 ◽  
Author(s):  
Andreas Oberbach ◽  
Nico Jehmlich ◽  
Nadine Schlichting ◽  
Marco Heinrich ◽  
Stefanie Lehmann ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Wesam F. Farrash ◽  
Bethan E. Phillips ◽  
Steven L. Britton ◽  
Nathan Qi ◽  
Lauren G. Koch ◽  
...  

IntroductionAssuming myokines underlie some of the health benefits of exercise, we hypothesised that ‘high responder trainer’ (HRT) rats would exhibit distinct myokine profiles to ‘low responder trainers’ (LRT), reflecting distinct health and adaptive traits.MethodsBlood was collected from LRT and HRT (N=8) rats at baseline (BL), immediately (0h), 1h, and 3h after running; repeated after 3-wks training. Myokines were analysed by ELISA (i.e. BDNF/Fractalkine/SPARC/Irisin/FGF21/Musclin/IL-6).ResultsAt baseline, Musclin (LRT: 84 ± 24 vs HRT: 26 ± 3 pg/ml, P=0.05) and FGF21 (LRT: 133 ± 34 vs HRT: 63.5 ± 13 pg/ml, P=0.08) were higher in LRT than HRT. Training increased Musclin in HRT (26 ± 3 to 54 ± 9 pg/ml, P<0.05) and decreased FGF21 in LRT (133 ± 34 to 60 ± 28 pg/ml, P<0.05). Training increased SPARC (LRT: 0.8 ± 0.1 to 2.1 ± 0.6 ng/ml, P<0.05; HRT: 0.7 ± 0.06 to 1.8 ± 0.3 ng/ml, P=0.06) and Irisin (LRT 0.62 ± 0.1 to 2.6 ± 0.4 ng/ml, P<0.01; HRT 0.53 ± 0.1 to 2.8 ± 0.7 ng/ml, P<0.01) while decreasing BDNF (LRT: 2747 ± 293 to 1081 ± 330 pg/ml, P<0.01; HRT: 1976 ± 328 to 797 ± 160 pg/ml, P<0.05). Acute exercise response of Musclin (AUC) was higher in LRT vs HRT (306 ± 74 vs. 88 ± 12 pg/ml×3h-1, P<0.01) and elevated in HRT after training (221 ± 31 pg/ml×3h-1, P<0.01). Training elevated SPARC (LRT: 2.4 ± 0.1 to 7.7 ± 1.3 ng/ml×3h-1, P<0.05; HRT: 2.5 ± 0.13 to 11.2 ± 2.2 ng/ml×3h-1, P<0.001) and Irisin (LRT: 1.34 ± 0.3 to 9.6 ± 1.7 ng/ml×3h-1, P<0.001; HRT: 1.5 ± 0.5 to 12.1 ± 1.9 ng/ml×3h-1, P<0.0001).ConclusionExercise training alters how myokines are secreted in response to acute exercise. Myokine responses were not robustly linked to adaptive potential in aerobic capacity, making them an unlikely regulator of adaptive traits.


Sign in / Sign up

Export Citation Format

Share Document