scholarly journals A Simple and Efficient Molecularly Imprinted Electrochemical Sensor for the Selective Determination of Tryptophan

Biomolecules ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 294 ◽  
Author(s):  
Tian ◽  
Deng ◽  
Wu ◽  
Ding ◽  
Li ◽  
...  

In this paper, a tryptophan (Trp) molecularly imprinted chitosan film was prepared on the surface of an acetylene black paste electrode using chitosan as the functional polymer, Trp as the template molecule and sulfuric acid as the crosslinking agent. The surface morphologies of non-imprinted and imprinted electrodes were characterized by scanning electron microscopy (SEM). The formation of hydrogen bonds between the functional polymer and the template molecule was confirmed by infrared spectroscopy. Some factors affecting the performance of the imprinted electrode such as the concentration of chitosan, the mass ratio of chitosan to Trp, the dropping amount of the chitosan-Trp mixture, the solution pH, and the accumulation potential and time were discussed. The experimental results show that the imprinted electrode exhibit good affinity and selectivity for Trp. The dynamic linear ranges of 0.01–4 M, 4–20 M and 20–100 M were obtained by second derivative linear sweep voltammetry, and the detection limit was calculated to be 8.0 nM. The use of the imprinted electrode provides an effective method for eliminating the interference of potentially interfering substances. In addition, the sensor has high sensitivity, reproducibility and stability, and can be used for the determination of Trp in pharmaceutical preparations and human serum samples.

2019 ◽  
Vol 58 (3) ◽  
pp. 274-279
Author(s):  
Mojtaba Soleimani ◽  
Ameneh Porgham Daryasari ◽  
Parisa Joshani

Abstract In this work, the molecularly imprinted polymer nanoparticles (MIP-NPs) for the selective determination of fluvoxamine have been described. The polymer nanoparticles were synthesized by the polymerization of methacrylic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, 2,2-azobisisobutyronitrile as an initiator and fluvoxamine as a template molecule. The MIP-NPs were characterized using techniques that included Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). Imprinted fluvoxamine molecules were removed from the polymeric structure using acetonitrile in methanol (2:8; v/v) as the eluting solvent. The linear dynamic range for fluvoxamine was 10–1200 μg L−1. The developed method was successfully applied to the extraction of fluvoxamine in complex biological samples.


2020 ◽  
Vol 9 (1) ◽  
pp. 760-767 ◽  
Author(s):  
Seyed Morteza Naghib ◽  
Farahnaz Behzad ◽  
Mehdi Rahmanian ◽  
Yasser Zare ◽  
Kyong Yop Rhee

AbstractFunctionalized graphene-based nanocomposites have opened new windows to address some challenges for increasing the sensitivity, accuracy and functionality of biosensors. Polyaniline (PANI) is one of the most potentially promising and technologically important conducting polymers, which brings together the electrical features of metals with intriguing properties of plastics including facile processing and controllable chemical and physical properties. PANI/graphene nanocomposites have attracted intense interest in various fields due to unique physicochemical properties including high conductivity, facile preparation and intriguing redox behavior. In this article, a functionalized graphene-grafted nanostructured PANI nanocomposite was applied for determining the ascorbic acid (AA) level. A significant current response was observed after treating the electrode surface with methacrylated graphene oxide (MeGO)/PANI nanocomposite. The amperometric responses showed a robust linear range of 8–5,000 µM and detection limit of 2 µM (N = 5). Excellent sensor selectivity was demonstrated in the presence of electroactive components interfering species, commonly found in real serum samples. This sensor is a promising candidate for rapid and selective determination of AA.


The Analyst ◽  
1994 ◽  
Vol 119 (9) ◽  
pp. 1993 ◽  
Author(s):  
Saad S. M. Hassan ◽  
Ragab M. Abdel-Aziz ◽  
Mohamed S. Abdel-Samad

Author(s):  
Jyoti . ◽  
Renata Rybakiewicz ◽  
Teresa Zolek ◽  
Dorota Maciejewska ◽  
Edyta Gilant ◽  
...  

An electrochemical chemosensor for cilostazol (CIL) determination was devised, engineered, and tested. For that, a unique conducting film of the functionalized thiophene-appended carbazole-based polymer, molecularly imprinted with cilostazol (MIP-CIL), was...


Sign in / Sign up

Export Citation Format

Share Document