scholarly journals How Lineage Tracing Studies Can Unveil Tumor Heterogeneity in Breast Cancer

Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Elena Vinuesa-Pitarch ◽  
Daniel Ortega-Álvarez ◽  
Verónica Rodilla

Lineage tracing studies have become a well-suited approach to reveal cellular hierarchies and tumor heterogeneity. Cellular heterogeneity, particularly in breast cancer, is still one of the main concerns regarding tumor progression and resistance to anti-cancer therapies. Here, we review the current knowledge about lineage tracing analyses that have contributed to an improved comprehension of the complexity of mammary tumors, highlighting how targeting different mammary epithelial cells and tracing their progeny can be useful to explore the intra- and inter-heterogeneity observed in breast cancer. In addition, we examine the strategies used to identify the cell of origin in different breast cancer subtypes and summarize how cellular plasticity plays an important role during tumorigenesis. Finally, we evaluate the clinical implications of lineage tracing studies and the challenges remaining to address tumor heterogeneity in breast cancer.

2019 ◽  
Author(s):  
Mathepan Mahendralingam ◽  
Kazeera Aliar ◽  
Alison Elisabeth Casey ◽  
Davide Pellacani ◽  
Hyeyeon Kim ◽  
...  

ABSTRACTCancer metabolism adapts the metabolic network of its tissue-of-origin. However, breast cancer is not a disease of a singular origin. Multiple epithelial populations serve as the culprit cell-of-origin for specific breast cancer subtypes, yet knowledge surrounding the metabolic network of normal mammary epithelial cells is limited. Here, we show that mammary populations have cell type-specific metabolic programs. Primary human breast cell proteomes of basal, luminal progenitor, and mature luminal populations revealed their unique enrichment of metabolic proteins. Luminal progenitors had higher abundance of electron transport chain subunits and capacity for oxidative phosphorylation, whereas basal cells were more glycolytic. Targeting oxidative phosphorylation and glycolysis with inhibitors exposed distinct metabolic vulnerabilities of the mammary lineages. Computational analysis indicated that breast cancer subtypes retain metabolic features of their putative cell-of-origin. Lineage-restricted metabolic identities of normal mammary cells partly explain breast cancer metabolic heterogeneity and rationalize targeting subtype-specific metabolic vulnerabilities to advance breast cancer therapy.


2011 ◽  
Vol 130 (3) ◽  
pp. 735-745 ◽  
Author(s):  
Clemens L. Bockmeyer ◽  
Matthias Christgen ◽  
Mirco Müller ◽  
Sebastian Fischer ◽  
Philipp Ahrens ◽  
...  

2004 ◽  
Vol 24 (12) ◽  
pp. 5548-5564 ◽  
Author(s):  
Jason D. Prescott ◽  
Karen S. N. Koto ◽  
Meenakshi Singh ◽  
Arthur Gutierrez-Hartmann

ABSTRACT Several different transcription factors, including estrogen receptor, progesterone receptor, and ETS family members, have been implicated in human breast cancer, indicating that transcription factor-induced alterations in gene expression underlie mammary cell transformation. ESE-1 is an epithelium-specific ETS transcription factor that contains two distinguishing domains, a serine- and aspartic acid-rich (SAR) domain and an AT hook domain. ESE-1 is abundantly expressed in human breast cancer and trans-activates epithelium-specific gene promoters in transient transfection assays. While it has been presumed that ETS factors transform mammary epithelial cells via their nuclear transcriptional functions, here we show (i) that ESE-1 protein is cytoplasmic in human breast cancer cells; (ii) that stably expressed green fluorescent protein-ESE-1 transforms MCF-12A human mammary epithelial cells; and (iii) that the ESE-1 SAR domain, acting in the cytoplasm, is necessary and sufficient to mediate this transformation. Deletion of transcriptional regulatory or nuclear localization domains does not impair ESE-1-mediated transformation, whereas fusing the simian virus 40 T-antigen nuclear localization signal to various ESE-1 constructs, including the SAR domain alone, inhibits their transforming capacity. Finally, we show that the nuclear localization of ESE-1 protein induces apoptosis in nontransformed mammary epithelial cells via a transcription-dependent mechanism. Together, our studies reveal two distinct ESE-1 functions, apoptosis and transformation, where the ESE-1 transcription activation domain contributes to apoptosis and the SAR domain mediates transformation via a novel nonnuclear, nontranscriptional mechanism. These studies not only describe a unique ETS factor transformation mechanism but also establish a new paradigm for cell transformation in general.


Cancers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3415
Author(s):  
Ge Dong ◽  
Gui Ma ◽  
Rui Wu ◽  
Jinming Liu ◽  
Mingcheng Liu ◽  
...  

Breast cancer is a common malignancy, but the understanding of its cellular and molecular mechanisms is limited. ZFHX3, a transcription factor with many homeodomains and zinc fingers, suppresses prostatic carcinogenesis but promotes tumor growth of liver cancer cells. ZFHX3 regulates mammary epithelial cells’ proliferation and differentiation by interacting with estrogen and progesterone receptors, potent breast cancer regulators. However, whether ZFHX3 plays a role in breast carcinogenesis is unknown. Here, we found that ZFHX3 promoted the proliferation and tumor growth of breast cancer cells in culture and nude mice; and higher expression of ZFHX3 in human breast cancer specimens was associated with poorer prognosis. The knockdown of ZFHX3 in ZFHX3-high MCF-7 cells decreased, and ZFHX3 overexpression in ZFHX3-low T-47D cells increased the proportion of breast cancer stem cells (BCSCs) defined by mammosphere formation and the expression of CD44, CD24, and/or aldehyde dehydrogenase 1. Among several transcription factors that have been implicated in BCSCs, MYC and TBX3 were transcriptionally activated by ZFHX3 via promoter binding, as demonstrated by luciferase-reporter and ChIP assays. These findings suggest that ZFHX3 promotes breast cancer cells’ proliferation and tumor growth likely by enhancing BCSC features and upregulating MYC, TBX3, and others.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Elizabeth Kenyon ◽  
Jennifer J. Westerhuis ◽  
Maximilian Volk ◽  
Jeremy Hix ◽  
Shatadru Chakravarty ◽  
...  

Abstract Background Prophylactic mastectomy is the most effective intervention to prevent breast cancer. However, this major surgery has life-changing consequences at the physical, emotional, psychological, and social levels. Therefore, only high-risk individuals consider this aggressive procedure, which completely removes the mammary epithelial cells from which breast cancer arises along with surrounding tissue. Here, we seek to develop a minimally invasive procedure as an alternative to prophylactic mastectomy by intraductal (ID) delivery of a cell-killing solution that locally ablates the mammary epithelial cells before they become malignant. Methods After ID injection of a 70% ethanol-containing solution in FVB/NJ female animals, ex vivo dual stained whole-mount tissue analysis and in vivo X-ray microcomputed tomography imaging were used to visualize ductal tree filling, and histological and multiplex immunohistochemical assays were used to characterize ablative effects and quantitate the number of intact epithelial cells and stroma. After ID injection of 70% ethanol or other solutions in cancer-prone FVB-Tg-C3(1)-TAg female animals, mammary glands were palpated weekly to establish tumor latency and examined after necropsy to record tumor incidence. Statistical difference in median tumor latency and tumor incidence between experimental groups was analyzed by log-rank test and logistic mixed-effects model, respectively. Results We report that ID injection of 70% ethanol effectively ablates the mammary epithelia with limited collateral damage to surrounding stroma and vasculature in the murine ductal tree. ID injection of 70% ethanol into the mammary glands of the C3(1)-TAg multifocal breast cancer model significantly delayed tumor formation (median latency of 150 days in the untreated control group [n = 25] vs. 217 days in the ethanol-treated group [n = 13], p value < 0.0001) and reduced tumor incidence (34% of glands with tumors [85 of 250] in the untreated control group vs. 7.3% of glands with tumor [7 of 95] in the ethanol-treated group, risk ratio = 4.76 [95% CI 1.89 to 11.97, p value < 0.0001]). Conclusions This preclinical study demonstrates the feasibility of local ductal tree ablation as a novel strategy for primary prevention of breast cancer. Given the existing clinical uses of ethanol, ethanol-based ablation protocols could be readily implemented in first-in-human clinical trials for high-risk individuals.


Sign in / Sign up

Export Citation Format

Share Document