scholarly journals Development of Small-Molecule STING Activators for Cancer Immunotherapy

Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 33
Author(s):  
Hee Ra Jung ◽  
Seongman Jo ◽  
Min Jae Jeon ◽  
Hyelim Lee ◽  
Yeonjeong Chu ◽  
...  

In cancer immunotherapy, the cyclic GMP–AMP synthase–stimulator of interferon genes (STING) pathway is an attractive target for switching the tumor immunophenotype from ‘cold’ to ‘hot’ through the activation of the type I interferon response. To develop a new chemical entity for STING activator to improve cyclic GMP-AMP (cGAMP)-induced innate immune response, we identified KAS-08 via the structural modification of DW2282, which was previously reported as an anti-cancer agent with an unknown mechanism. Further investigation revealed that direct STING binding or the enhanced phosphorylation of STING and downstream effectors were responsible for DW2282-or KAS-08-mediated STING activity. Furthermore, KAS-08 was validated as an effective STING pathway activator in vitro and in vivo. The synergistic effect of cGAMP-mediated immunity and efficient anti-cancer effects successfully demonstrated the therapeutic potential of KAS-08 for combination therapy in cancer treatment.

2021 ◽  
Author(s):  
Mengmeng Liu ◽  
Yue Pan ◽  
Xufeng Tao ◽  
Ning Li ◽  
Kun Li ◽  
...  

Abstract BackgroundPDAC is universally acknowledged to be one of the highest mortality rate of cancer-related deaths. PCSCs, regulated by EMT, could promote the proliferation of PDAC. Berberine with high medicinal value has usually been used as an anti-cancer agent. Hence the purpose of this study is to investigate the anti-cancer effect of berberine in PDAC. MethodsMTT assay was used to verify berberine inhibiting the proliferation of PDAC. Immunofluorescence staining, stem cell sphere, wound healing and transwell migration assay were demonstrated the anti-proliferation and anti-stemness of PCSCs in vitro . PANC-02 cells were injected in C57BL/6 mice to establish the orthotopic pancreatic-cancer model in vivo . H&E and Ki67 immunohistogical staining assay were used to evaluated the effect of berberine in PDAC in vivo. q-PCR and Western blot methods were applied to detect the expression of EMT procedure.ResultsIn this study, berberine has selective anti-cancer effect in PDAC in vitro . Moreover, berberine suppressed the proliferation and stemness of PCSCs in PDAC. In vivo , berberine reduced the tumor size and decreased the expression of Ki67 in orthotopic pancreatic-cancer pancreases. In addition, berberine inhibit the EMT signaling pathway both in vitro and in vivo . ConclusionsOur study indicates that berberine inhibit the proliferation of PDAC in vivo and vitro . The mechanism of anti-cancer effect on berberine may suppress the PCSCs through inhibiting EMT procedure. Therefore, berberine may be the novel antineoplastic drug with clinical effectiveness in PDAC. Keywords: Berberine, PDAC, PCSCs, EMT, berberine


2008 ◽  
Vol 82 (17) ◽  
pp. 8465-8475 ◽  
Author(s):  
Stephane Daffis ◽  
Melanie A. Samuel ◽  
Mehul S. Suthar ◽  
Brian C. Keller ◽  
Michael Gale ◽  
...  

ABSTRACT Type I interferon (IFN-α/β) comprises a family of immunomodulatory cytokines that are critical for controlling viral infections. In cell culture, many RNA viruses trigger IFN responses through the binding of RNA recognition molecules (RIG-I, MDA5, and TLR-3) and induction of interferon regulatory factor IRF-3-dependent gene transcription. Recent studies with West Nile virus (WNV) have shown that type I IFN is essential for restricting infection and that a deficiency of IRF-3 results in enhanced lethality. However, IRF-3 was not required for optimal systemic IFN production in vivo or in vitro in macrophages. To begin to define the transcriptional factors that regulate type I IFN after WNV infection, we evaluated IFN induction and virus control in IRF-7−/− mice. Compared to congenic wild-type mice, IRF-7−/− mice showed increased lethality after WNV infection and developed early and elevated WNV burdens in both peripheral and central nervous system tissues. As a correlate, a deficiency of IRF-7 blunted the systemic type I IFN response in mice. Consistent with this, IFN-α gene expression and protein production were reduced and viral titers were increased in IRF-7−/− primary macrophages, fibroblasts, dendritic cells, and cortical neurons. In contrast, in these cells the IFN-β response remained largely intact. Our data suggest that the early protective IFN-α response against WNV occurs through an IRF-7-dependent transcriptional signal.


Cancers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 5056
Author(s):  
Robert Cornelison ◽  
Kuntal Biswas ◽  
Danielle C. Llaneza ◽  
Alexandra R. Harris ◽  
Nisha G. Sosale ◽  
...  

Epithelial ovarian cancer (EOC) is the deadliest of the gynecologic malignancies, with an overall survival rate of <30%. Recent research has suggested that targeting RNA polymerase I (POL I) with small-molecule inhibitors may be a viable therapeutic approach to combating EOC, even when chemoresistance is present. CX-5461 is one of the most promising POL I inhibitors currently being investigated, and previous reports have shown that CX-5461 treatment induces DNA damage response (DDR) through ATM/ATR kinase. Investigation into downstream effects of CX-5461 led us to uncovering a previously unreported phenotype. Treatment with CX-5461 induces a rapid accumulation of cytosolic DNA. This accumulation leads to transcriptional upregulation of ‘STimulator of Interferon Genes’ (STING) in the same time frame, phosphorylation of IRF3, and activation of type I interferon response both in vitro and in vivo. This activation is mediated and dependent on cyclic GMP–AMP synthase (cGAS). Here, we show THAT CX-5461 leads to an accumulation of cytosolic dsDNA and thereby activates the cGAS–STING–TBK1–IRF3 innate immune pathway, which induces type I IFN. CX-5461 treatment-mediated immune activation may be a powerful mechanism of action to exploit, leading to novel drug combinations with a chance of increasing immunotherapy efficacy, possibly with some cancer specificity limiting deleterious toxicities.


2021 ◽  
Author(s):  
Marilyn E Allen ◽  
Amit Golding ◽  
Violeta Rus ◽  
Nicholas B Karabin ◽  
Sophia Li ◽  
...  

Systemic lupus erythematosus (SLE) causes damaging inflammation in multiple organs via the accumulation of immune complexes. These complexes activate plasmacytoid DCs (pDCs) via TLR7 and TLR9, contributing to disease pathogenesis by driving secretion of inflammatory type I IFNs. Antimalarial drugs, such as chloroquine (CQ), are TLR antagonists used to alleviate inflammation in SLE. However, they require ~3 months of continuous use before achieving therapeutic efficacy and can accumulate in the retinal pigment epithelium with chronic use resulting in retinopathy. We hypothesized that poly(ethylene glycol)-b-poly(propylene sulfide) (PEG-b-PPS) filamentous nanocarriers, filomicelles (FMs) could improve drug activity and reduce toxicity by directly delivering CQ to pDCs via passive, morphology-based targeting. Healthy human PBMCs were treated with soluble CQ or CQ-loaded FMs, stimulated with TLR agonists or SLE patient sera, and type I IFN secretion was quantified via multi-subtype IFN-α ELISA and MX1 gene expression using real-time RT-qPCR. Our results showed that 50 µg CQ/mg FM decreased MX1 expression and IFN-α production after TLR activation with either synthetic nucleic acid agonists or immune complex rich sera from SLE patients. Cellular uptake and biodistribution studies showed that FMs preferentially accumulate in human pDCs in vitro and in tissues frequently damaged in SLE patients (i.e., liver and kidneys) while sparing the eye in vivo. These results showed that nanocarrier morphology enables drug delivery, and CQ-FMs may be equally effective and more targeted than soluble CQ at inhibiting SLE-relevant pathways.


2020 ◽  
Vol 21 (1) ◽  
pp. 11-24
Author(s):  
Chandrasai Potla Durthi ◽  
Madhuri Pola ◽  
Satish Babu Rajulapati ◽  
Anand Kishore Kola ◽  
Mohammad Amjad Kamal

L-glutaminase has versatile applications in pharma and food industries. In pharmaceutical industry, L-glutaminase can be used as anti-oxidant and anti-cancer agent to treat Acute Lymphocytic Leukaemia (ALL). Whereas, in the food industry, L-glutaminase is used for acrylamide degradation, theanine production, flavour enhancer, soy sauce and many. The other applications include nitrogen metabolism and its use as biosensor in hybridoma technology. Both intra-cellular and extra-cellular L-glutaminases from wide range of sources were identified. Because of its diverse applications, there is a need to improve the production of L-glutaminase by enzyme engineering technology. Effect of recombination on L-glutaminase production was also reported. Researchers also confirmed the antitumor properties of L-glutaminase by conducting in vitro, in vivo and in silico studies. Bacillus sps. and Aspergillus sps. are the commercial producers of L-glutaminase. In this review, the applications, different sources of Lglutaminase, anti-cancer properties were discussed.


Blood ◽  
2006 ◽  
Vol 109 (7) ◽  
pp. 2797-2805 ◽  
Author(s):  
Brian D. Brown ◽  
Giovanni Sitia ◽  
Andrea Annoni ◽  
Ehud Hauben ◽  
Lucia Sergi Sergi ◽  
...  

AbstractLiver gene transfer is a highly sought goal for the treatment of inherited and infectious diseases. Lentiviral vectors (LVs) have many desirable properties for hepatocyte-directed gene delivery, including the ability to integrate into nondividing cells. Unfortunately, upon systemic administration, LV transduces hepatocytes relatively inefficiently compared with nonparenchymal cells, and the duration of transgene expression is often limited by immune responses. Here, we investigated the role of innate antiviral responses in these events. We show that administration of LVs to mice triggers a rapid and transient IFNαβ response. This effect was dependent on functional vector particles, and in vitro challenge of antigen-presenting cells suggested that plasmacytoid dendritic cells initiated the response. Remarkably, when LVs were administered to animals that lack the capacity to respond to IFNαβ, there was a dramatic increase in hepatocyte transduction, and stable transgene expression was achieved. These findings indicate that, even in the setting of acute delivery of replication-defective vectors, IFNs effectively interfere with transduction in a cell-type–specific manner. Moreover, because disabling a single component of the innate/immune network was sufficient to establish persistent xenoantigen expression, our results raise the hope that the immunologic barriers to gene therapy are less insurmountable than expected.


2017 ◽  
Vol 126 ◽  
pp. 12-24 ◽  
Author(s):  
Baojian Guo ◽  
Shengquan Hu ◽  
Chengyou Zheng ◽  
Hongyu Wang ◽  
Fangcheng Luo ◽  
...  
Keyword(s):  
Mao B ◽  

Antioxidants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 723
Author(s):  
Tse-En Wang ◽  
Yu-Hua Lai ◽  
Kai-Chien Yang ◽  
Sung-Jan Lin ◽  
Chih-Lin Chen ◽  
...  

Cisplatin, despite its anti-cancer ability, exhibits severe testicular toxicities when applied systemically. Due to its wide application in cancer treatment, reduction of its damages to normal tissue is an imminent clinical need. Here we evaluated the effects of honokiol, a natural lipophilic polyphenol compound, on cisplatin-induced testicular injury. We showed in-vitro and in-vivo that nanosome-encapsulated honokiol attenuated cisplatin-induced DNA oxidative stress by suppressing intracellular reactive oxygen species production and elevating gene expressions of mitochondrial antioxidation enzymes. Nanosome honokiol also mitigated endoplasmic reticulum stress through down regulation of Bip-ATF4-CHOP signaling pathway. Additionally, this natural polyphenol compound diminished cisplatin-induced DNA breaks and cellular apoptosis. The reduced type I collagen accumulation in the testis likely attributed from inhibition of TGFβ1, αSMA and ER protein TXNDC5 protein expression. The combinatorial beneficial effects better preserve spermatogenic layers and facilitate repopulation of sperm cells. Our study renders opportunity for re-introducing cisplatin to systemic anti-cancer therapy with reduced testicular toxicity and restored fertility.


Sign in / Sign up

Export Citation Format

Share Document