scholarly journals Brassicasterol with Dual Anti-Infective Properties against HSV-1 and Mycobacterium tuberculosis, and Cardiovascular Protective Effect: Nonclinical In Vitro and In Silico Assessments

Biomedicines ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 132
Author(s):  
Sherif T. S. Hassan

While few studies have revealed the biological properties of brassicasterol, a phytosterol, against some biological and molecular targets, it is believed that there are still many activities yet to be studied. In this work, brassicasterol exerts a therapeutic utility in an in vitro setting against herpes simplex virus type 1 (HSV-1) and Mycobacterium tuberculosis (Mtb) as well as a considerable inhibitory property against human angiotensin-converting enzyme (ACE) that plays a dynamic role in regulating blood pressure. The antireplicative effect of brassicasterol against HSV-1 is remarkably detected (50% inhibitory concentration (IC50): 1.2 µM; selectivity index (SI): 41.7), while the potency of its effect is ameliorated through the combination with standard acyclovir with proper SI (IC50: 0.7 µM; SI: 71.4). Moreover, the capacity of this compound to induce an adequate level of antituberculosis activity against all Mtb strains examined (minimum inhibitory concentration values ranging from 1.9 to 2.4 µM) is revealed. The anti-ACE effect (12.3 µg/mL; 91.2% inhibition) is also ascertained. Molecular docking analyses propose that the mechanisms by which brassicasterol induces anti-HSV-1 and anti-Mtb might be related to inhibiting vital enzymes involved in HSV-1 replication and Mtb cell wall biosynthesis. In summary, the obtained results suggest that brassicasterol might be promising for future anti-HSV-1, antituberculosis, and anti-ACE drug design.

Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 267 ◽  
Author(s):  
Maria Musarra-Pizzo ◽  
Rosamaria Pennisi ◽  
Ichrak Ben-Amor ◽  
Antonella Smeriglio ◽  
Giuseppina Mandalari ◽  
...  

Natural compounds are a prominent source of novel antiviral drugs. Several reports have previously shown the antimicrobial activity of pistachio polyphenol extracts. Therefore, the aim of our research was to investigate the activity of polyphenol-rich extracts of natural shelled (NPRE) pistachios kernels (Pistacia vera L.) on herpes simplex virus type 1 (HSV-1) replication. The Vero cell line was used to assess the cytotoxicity and antiviral activity. The cell viability was calculated by detection of cellular ATP after treatment with various concentrations of NPRE. For antiviral studies, five nontoxic-concentrations (0.1, 0.2, 0.4, 0.6, 0.8 mg/mL) were tested. Our study demonstrated that treatment with NPRE (0.4, 0.6, 0.8 mg/mL) reduced the expression of the viral proteins ICP8 (infected cell polypeptide 8), UL42 (unique long UL42 DNA polymerase processivity factor), and US11 (unique short US11 protein), and resulted in a decrease of viral DNA synthesis. The 50% cytotoxic concentration (CC50), 50% inhibitory concentration (EC50), and the selectivity index (SI) values for NPRE were 1.2 mg/mL, 0.4mg/mL, and 3, respectively. Furthermore, we assessed the anti-herpetic effect of a mix of pure polyphenol compounds (NS MIX) present in NPRE. In conclusion, our findings indicate that natural shelled pistachio kernels have remarkable inhibitory activity against HSV-1.


2020 ◽  
Vol 15 (1) ◽  
pp. 11-18
Author(s):  
Arisha Taj Mahaboob Batcha ◽  
Ashish Wadhwani ◽  
Gowri Subramaniam

The present study evaluates the antiviral activity of banana lectin (BanLec) against herpes simplex virus type 1 and 2 (HSV-1 and HSV-2). Lectin was isolated from the ripen pulp of bananas (Musa paradisiaca). The study showed that lectin exhibited hemagglutination activity towards human erythrocytes A, B, AB and O group. The molecular weight of BanLec using SDS gel-electrophoresis was found to be 14,000-30,000 Da. Cytotoxicity of BanLec on the Vero cell lines showed an inhibitory concentration of 172.7 µg/mL. BanLec was virucidal and showed no cytotoxicity at the concentration tested. The lectin showed a dose-dependent antiviral activities, inhibiting HSV-1 by 16.0 µg/mL with selectivity index 10.8 and HSV-2 inhibition by 67.7 µg/mL with selectivity index 2.6. These results corroborate that BanLec could be a rich source of potential antiviral compound for HSV-1 when compared to HSV-2.


2003 ◽  
Vol 77 (5) ◽  
pp. 3307-3311 ◽  
Author(s):  
Sarah M. Richart ◽  
Scott A. Simpson ◽  
Claude Krummenacher ◽  
J. Charles Whitbeck ◽  
Lewis I. Pizer ◽  
...  

ABSTRACT Primary cultures of rat and mouse sensory neurons were used to study the entry of herpes simplex virus type 1 (HSV-1). Soluble, truncated nectin-1 but not HveA prevented viral entry. Antibodies against nectin-1 also blocked infection of rat neurons. These results indicate that nectin-1 is the primary receptor for HSV-1 infection of sensory neurons.


2003 ◽  
Vol 77 (2) ◽  
pp. 1382-1391 ◽  
Author(s):  
Michiko Tanaka ◽  
Hiroyuki Kagawa ◽  
Yuji Yamanashi ◽  
Tetsutaro Sata ◽  
Yasushi Kawaguchi

ABSTRACT In recent years, several laboratories have reported on the cloning of herpes simplex virus type 1 (HSV-1) genomes as bacterial artificial chromosomes (BACs) in Escherichia coli and on procedures to manipulate these genomes by using the bacterial recombination machinery. However, the HSV-BACs reported so far are either replication incompetent or infectious, with a deletion of one or more viral genes due to the BAC vector insertion. For use as a multipurpose clone in research on HSV-1, we attempted to generate infectious HSV-BACs containing the full genome of HSV-1 without any loss of viral genes. Our results were as follows. (i) E. coli (YEbac102) harboring the full-length HSV-1 genome (pYEbac102) in which a BAC flanked by loxP sites was inserted into the intergenic region between UL3 and UL4 was constructed. (ii) pYEbac102 was an infectious molecular clone, given that its transfection into rabbit skin cells resulted in production of infectious virus (YK304). (iii) The BAC vector sequence was almost perfectly excisable from the genome of the reconstituted virus YK304 by coinfection of Vero cells with YK304 and a recombinant adenovirus, AxCANCre, expressing Cre recombinase. (iv) As far as was examined, the reconstituted viruses from pYEbac102 could not be phenotypically differentiated from wild-type viruses in vitro and in vivo. Thus, the viruses grew as well in Vero cells as did the wild-type virus and exhibited wild-type virulence in mice on intracerebral inoculation. (v) The infectious molecular clone pYEbac102 is in fact useful for mutagenesis of the HSV-1 genome by bacterial genetics, and a recombinant virus carrying amino acid substitutions in both copies of the α0 gene was generated. pYEbac102 will have multiple applications to the rapid generation of genetically engineered HSV-1 recombinants in basic research into HSV-1 and in the development of HSV vectors in human therapy.


1995 ◽  
Vol 39 (4) ◽  
pp. 846-849 ◽  
Author(s):  
H Aoki ◽  
T Akaike ◽  
K Abe ◽  
M Kuroda ◽  
S Arai ◽  
...  

Oryzacystatin (OC) is the first-described cystatin originating from rice seed; it consists of two molecular species, OC-I and OC-II, which have antiviral action against poliovirus in vitro (H. Kondo, S. Ijiri, K. Abe, H. Maeda, and S. Arai, FEBS Lett. 299:48-50, 1992). In the experiments reported here, we investigated the effects of OC-I and OC-II on the replication of herpes simplex virus type 1 (HSV-1) in vitro and in vivo. HSV-1 was inoculated onto monolayers of monkey kidney epithelial cells (CV-1 cells) at a multiplicity of infection of 0.1 PFU per cell. After adsorption of the virus onto cells, the cultures were incubated in the presence of either OC-I or OC-II in the concentration range of 1.0 to 300 microM, and the supernatant virus yield was quantitated at 24 h. The effective concentration for 90% inhibition of HSV-1 was 14.8 microM, while a cytotoxic effect on CV-1 cells without infection of HSV-1 was not observed below 500 microM OC-I. Therefore, the apparent in vitro chemotherapeutic index was estimated to be more than 33. In the mouse model of HSV-1-induced keratitis and encephalopathy, topical administration of OC-I to the mouse cornea produced a significant decrease in virus production in the cornea (mean virus yields: 3.11 log10 PFU in the treated group and 4.37 log10 PFU in the control group) and significant improvement in survival rates (P = 0.01). The in vivo antiherpetic effect of OC-I was comparable to that of acyclovir, indicating that topical treatment of HSV-1 infection in humans with OC-I might be possible. Our data also suggest the importance of some thiol proteinases, which may be derived from either the host's cells or HSV-1, during the replication process of HSV-1.


2008 ◽  
Vol 82 (15) ◽  
pp. 7388-7394 ◽  
Author(s):  
Sara K. Shanda ◽  
Duncan W. Wilson

ABSTRACT Microtubule-mediated anterograde transport is essential for the transport of herpes simplex virus type 1 (HSV-1) along axons, yet little is known regarding the mechanism and the machinery required for this process. Previously, we were able to reconstitute anterograde transport of HSV-1 on microtubules in an in vitro microchamber assay. Here we report that the large tegument protein UL36p is essential for this trafficking. Using a fluorescently labeled UL36 null HSV-1 strain, KΔUL36GFP, we found that it is possible to isolate a membrane-associated population of this virus. Although these viral particles contained normal amounts of tegument proteins VP16, vhs, and VP22, they displayed a 3-log decrease in infectivity and showed a different morphology compared to UL36p-containing virions. Membrane-associated KΔUL36GFP also displayed a slightly decreased binding to microtubules in our microchamber assay and a two-thirds decrease in the frequency of motility. This decrease in binding and motility was restored when UL36p was supplied in trans by a complementing cell line. These findings suggest that UL36p is necessary for HSV-1 anterograde transport.


2002 ◽  
Vol 76 (22) ◽  
pp. 11541-11550 ◽  
Author(s):  
Bruno Sainz ◽  
William P. Halford

ABSTRACT In vivo evidence suggests that T-cell-derived gamma interferon (IFN-γ) can directly inhibit the replication of herpes simplex virus type 1 (HSV-1). However, IFN-γ is a weak inhibitor of HSV-1 replication in vitro. We have found that IFN-γ synergizes with the innate IFNs (IFN-α and -β) to potently inhibit HSV-1 replication in vitro and in vivo. Treatment of Vero cells with either IFN-β or IFN-γ inhibits HSV-1 replication by <20-fold, whereas treatment with both IFN-β and IFN-γ inhibits HSV-1 replication by ∼1,000-fold. Treatment with IFN-β and IFN-γ does not prevent HSV-1 entry into Vero cells, and the inhibitory effect can be overcome by increasing the multiplicity of HSV-1 infection. The capacity of IFN-β and IFN-γ to synergistically inhibit HSV-1 replication is not virus strain specific and has been observed in three different cell types. For two of the three virus strains tested, IFN-β and IFN-γ inhibit HSV-1 replication with a potency that approaches that achieved by a high dose of acyclovir. Pretreatment of mouse eyes with IFN-β and IFN-γ reduces HSV-1 replication to nearly undetectable levels, prevents the development of disease, and reduces the latent HSV-1 genome load per trigeminal ganglion by ∼200-fold. Thus, simultaneous activation of IFN-α/β receptors and IFN-γ receptors appears to render cells highly resistant to the replication of HSV-1. Because IFN-α or IFN-β is produced by most cells as an innate response to virus infection, the results imply that IFN-γ secreted by T cells may provide a critical second signal that potently inhibits HSV-1 replication in vivo.


Blood ◽  
2004 ◽  
Vol 103 (4) ◽  
pp. 1433-1437 ◽  
Author(s):  
Anne Krug ◽  
Gary D. Luker ◽  
Winfried Barchet ◽  
David A. Leib ◽  
Shizuo Akira ◽  
...  

Abstract Natural interferon-producing cells (IPCs) specialize in the production of high levels of type 1 interferons (IFNs) in response to encapsulated DNA and RNA viruses. Here we demonstrate that the secretion of type 1 IFN in response to herpes simplex virus type 1 (HSV-1) in vitro is mediated by the toll-like receptor 9 (TLR9)/MyD88 pathway. Moreover, IPCs produce interleukin-12 (IL-12) in response to HSV-1 in vitro, which is also dependent on TLR9/ MyD88 signaling. Remarkably, though TLR9/MyD88-deficiency abrogates IPC responses to HSV-1 in vitro, mice lacking either MyD88 or TLR9 are capable of controlling HSV-1 replication in vivo after local infection, demonstrating that TLR9- and MyD88-independent pathways in cells other than IPCs can effectively compensate for defective IPC responses to HSV-1.


2000 ◽  
Vol 74 (16) ◽  
pp. 7196-7203 ◽  
Author(s):  
Ali Ahmad ◽  
Ehsan Sharif-Askari ◽  
Lama Fawaz ◽  
José Menezes

ABSTRACT Infections with herpes simplex virus type 1 (HSV-1) in humans and in animal models are accompanied by enhanced natural killer (NK) activity. In vitro, HSV-1 also enhances the NK activity of human peripheral blood mononuclear cells (PBMC). The molecular basis of this enhanced NK activity, however, is not well characterized. We investigated the role of human interleukin-15 (IL-15) in this phenomenon and report here that HSV-1-mediated enhanced NK activity was abrogated by neutralizing antibodies for IL-15 but not for other cytokines (i.e., IL-2, IL-12, gamma interferon [IFN-γ], tumor necrosis factor alpha, or IFN-α). Anti-CD122 antibodies which block signaling through IL-2 receptor β chain, and therefore neutralize the effects of IL-15 (and IL-2), also abrogated this enhancement. Furthermore, HSV-1 increased the levels of IL-15 mRNA and the production of IL-15 in HSV-1-infected PBMC cultures. The neutralization of IL-15 in cocultures of PBMC with HSV-1-infected cells significantly increased HSV-1 production. These results strongly suggest a role for IL-15 in the HSV-1-mediated in vitro enhancement of NK activity and in the PBMC-mediated suppression of HSV-1 replication.


Author(s):  
Antonella Di Sotto ◽  
Silvia Di Giacomo ◽  
Donatella Amatore ◽  
Marcello Locatelli ◽  
Annabella Vitalone ◽  
...  

DR2B and DR2C extracts, from peel of commercially and physiologically ripe eggplants, were studied for the antioxidative cytoprotective properties and anti-HSV-1 activity, in line with the evidence that several antioxidants can impair viral replication by maintaining reducing conditions into the host cells. The antioxidative cytoprotective effects against tBOOH-induced damage was assessed in Caco2 cells, while the antiviral activity was studied in Vero cells; phenolic and anthocyanin fingerprint was characterized by integrated phytochemical methods. Results highlighted different compositions of the extracts, with chlorogenic acid and delphinidin-3-rutinoside as the major constituents; other peculiar phytochemicals were also identified. DR2C resulted able to partly counteract the tBOOH-induced cytotoxicity, with a remarkable lowering of lactate metabolism under both normoxia and hypoxia. DR2B and DR2C reduced ROS production, possessed scavenging and chelating properties. Interestingly, DR2C increased intracellular GSH levels. Furthermore, DR2C inhibited the HSV-1 replication when added for 24 h after viral adsorption, as also confirmed by the reduction of many viral proteins expression. Since DR2C was able to reduce NOX4 expression during HSV-1 infection, its antiviral activity may be correlated to its antioxidant properties. Although further studies are needed to better characterize DR2C activity, the results suggest this extract as a promising new anti-HSV-1 agent.


Sign in / Sign up

Export Citation Format

Share Document