scholarly journals High Na+ Salt Diet and Remodeling of Vascular Smooth Muscle and Endothelial Cells

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 883
Author(s):  
Ghassan Bkaily ◽  
Yanick Simon ◽  
Ashley Jazzar ◽  
Houssein Najibeddine ◽  
Alexandre Normand ◽  
...  

Our knowledge on essential hypertension is vast, and its treatment is well known. Not all hypertensives are salt-sensitive. The available evidence suggests that even normotensive individuals are at high cardiovascular risk and lower survival rate, as blood pressure eventually rises later in life with a high salt diet. In addition, little is known about high sodium (Na+) salt diet-sensitive hypertension. There is no doubt that direct and indirect Na+ transporters, such as the Na/Ca exchanger and the Na/H exchanger, and the Na/K pump could be implicated in the development of high salt-induced hypertension in humans. These mechanisms could be involved following the destruction of the cell membrane glycocalyx and changes in vascular endothelial and smooth muscle cells membranes’ permeability and osmolarity. Thus, it is vital to determine the membrane and intracellular mechanisms implicated in this type of hypertension and its treatment.

2020 ◽  
Vol 126 (7) ◽  
pp. 839-853 ◽  
Author(s):  
Xuefang Yan ◽  
Jiajia Jin ◽  
Xinhuan Su ◽  
Xianlun Yin ◽  
Jing Gao ◽  
...  

Rationale: High-salt diet is one of the most important risk factors for hypertension. Intestinal flora has been reported to be associated with high salt–induced hypertension (hSIH). However, the detailed roles of intestinal flora in hSIH pathogenesis have not yet been fully elucidated. Objective: To reveal the roles and mechanisms of intestinal flora in hSIH development. Methods and Results: The abovementioned issues were investigated using various techniques including 16S rRNA gene sequencing, untargeted metabolomics, selective bacterial culture, and fecal microbiota transplantation. We found that high-salt diet induced hypertension in Wistar rats. The fecal microbiota of healthy rats could dramatically lower blood pressure (BP) of hypertensive rats, whereas the fecal microbiota of hSIH rats had opposite effects. The composition, metabolism, and interrelationship of intestinal flora in hSIH rats were considerably reshaped, including the increased corticosterone level and reduced Bacteroides and arachidonic acid levels, which tightly correlated with BP. The serum corticosterone level was also significantly increased in rats with hSIH. Furthermore, the above abnormalities were confirmed in patients with hypertension. The intestinal Bacteroides fragilis could inhibit the production of intestinal-derived corticosterone induced by high-salt diet through its metabolite arachidonic acid. Conclusions: hSIH could be transferred by fecal microbiota transplantation, indicating the pivotal roles of intestinal flora in hSIH development. High-salt diet reduced the levels of B fragilis and arachidonic acid in the intestine, which increased intestinal-derived corticosterone production and corticosterone levels in serum and intestine, thereby promoting BP elevation. This study revealed a novel mechanism different from inflammation/immunity by which intestinal flora regulated BP, namely intestinal flora could modulate BP by affecting steroid hormone levels. These findings enriched the understanding of the function of intestinal flora and its effects on hypertension.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Germán E González ◽  
Nour-Eddine Rhaleb ◽  
Pablo Nakagawa ◽  
Yun-He Liu ◽  
Oscar A Carretero

IL-6 knockout (KO) mice were reported to spontaneously develop cardiac dysfunction and fibrosis. These KO mice also develop less hypertension when fed high salt and infused with angiotensin II (Ang II). We tested the hypothesis that in IL-6-KO mice the attenuated hypertension in response to Ang II-salt is due to the development of cardiac dysfunction. Male C57Bl/6J and IL-6-/- mice (B6.129S6- Il6 tm1Kopf ) were implanted with telemetry devices for blood pressure measurements, infused with vehicle (V) or Ang II (90 ng/min/mouse subcutaneously) and feed a high salt diet (4% salt diet, HS) for 8 weeks (W). We studied 4 experimental groups: 1) C57BL/6J + V (n=9); 2) IL6-KO + V (n=9); 3) C57BL/6J + Ang II (n=8) and 4) IL6-KO + Ang II (n=6). Blood pressure and echocardiography data were collected before starting the HS diet and Ang II infusion (baseline) and 8 weeks after HS alone or combined with Ang II. Results (Mean±SEM) Conclusion: Our results do not support our hypothesis and shows that the lack of IL-6 does not affect development of hypertension or cardiac hypertrophy but rather prevents cardiac dysfunction, LV dilation, myocardial inflammation and fibrosis in Ang II-salt-induced hypertension, suggesting that IL-6 plays an important role in cardiac dysfunction associated with hypertension.


2011 ◽  
Vol 89 (4) ◽  
pp. 295-304 ◽  
Author(s):  
A.K. Oloyo ◽  
O.A. Sofola ◽  
C.N. Anigbogu

The effect of sex hormones on vascular reactivity is considered one of the underlying factors contributing to gender differences in cardiovascular functions and diseases. Experiments were designed to investigate the role of androgens in salt-induced hypertension by assessing the relaxation response of isolated aortic rings to acetylcholine and sodium nitroprusside in the presence or absence of l-nitroarginine methyl ester in Sprague–Dawley rats. The rats were either orchidectomized or sham-operated, with or without testosterone replacement, and were placed on a normal or high-salt diet for 6 weeks. The results indicate a significant increase (p < 0.001) in the mean arterial blood pressure of rats on the high-salt diet, when compared with control or orchidectomized rats. Orchidectomy elicited a reduction in mean arterial blood pressure (p < 0.01), while testosterone replacement normalized mean arterial blood pressure to values seen in intact rats on the high-salt diet. The high-salt diet reduced the relaxation response to acetylcholine both in the presence and absence of inhibition of endothelial nitric oxide synthase with l-nitroarginine methyl ester. Bilateral orchidectomy attenuated the impaired endothelial function induced by the high-salt diet in rats, but this was reversed by concomitant administration of testosterone, suggesting a role for androgens in enhancing long-term vascular smooth muscle tone and hence maintenance of high blood pressure in salt-induced hypertension.


2015 ◽  
Vol 31 (6) ◽  
pp. 914-921 ◽  
Author(s):  
Stephanie Lankhorst ◽  
Hans J. Baelde ◽  
Marian C. Clahsen-van Groningen ◽  
Frank M.M. Smedts ◽  
A.H. Jan Danser ◽  
...  

2005 ◽  
Vol 288 (3) ◽  
pp. R615-R622 ◽  
Author(s):  
Federico J. Teran ◽  
Robert A. Johnson ◽  
Blake K. Stevenson ◽  
Kelly J. Peyton ◽  
Keith E. Jackson ◽  
...  

Vascular tissues express heme oxygenase (HO), which metabolizes heme to form carbon monoxide (CO). Heme-derived CO inhibits nitric oxide synthase and promotes endothelium-dependent vasoconstriction. After 4 wk of high-salt diet, Dahl salt-sensitive (Dahl-S) rats display hypertension, increased vascular HO-1 expression, and attenuated vasodilator responses to ACh that can be completely restored by acute treatment with an inhibitor of HO. In this study, we examined the temporal development of HO-mediated endothelial dysfunction in isolated pressurized first-order gracilis muscle arterioles, identified the HO product responsible, and studied the blood pressure effects of HO inhibition in Dahl-S rats on a high-salt diet. Male Dahl-S rats (5–6 wk) were placed on high-salt (8% NaCl) or low-salt (0.3% NaCl) diets for 0–4 wk. Blood pressure increased gradually, and responses to an endothelium-dependent vasodilator, ACh, decreased gradually with the length of high-salt diet. Flow-induced dilation was abolished in hypertensive Dahl-S rats. Acute in vitro pretreatment with an inhibitor of HO, chromium mesoporphyrin (CrMP), restored endothelium-dependent vasodilation and abolished the differences between groups. The HO product CO prevented the restoration of endothelium-dependent dilation by CrMP. Furthermore, administration of an HO inhibitor lowered blood pressure in Dahl-S rats with salt-induced hypertension but did not do so in low-salt control rats. These results suggest that hypertension and HO-mediated endothelial dysfunction develop gradually and simultaneously in Dahl-S rats on high-salt diets. They also suggest that HO-derived CO underlies the impaired endothelial dysfunction and contributes to hypertension in Dahl-S rats on high-salt diets.


2019 ◽  
Vol 20 (14) ◽  
pp. 3495 ◽  
Author(s):  
Yanling Yan ◽  
Jiayan Wang ◽  
Muhammad A. Chaudhry ◽  
Ying Nie ◽  
Shuyan Sun ◽  
...  

We have demonstrated that Na/K-ATPase acts as a receptor for reactive oxygen species (ROS), regulating renal Na+ handling and blood pressure. TALLYHO/JngJ (TH) mice are believed to mimic the state of obesity in humans with a polygenic background of type 2 diabetes. This present work is to investigate the role of Na/K-ATPase signaling in TH mice, focusing on susceptibility to hypertension due to chronic excess salt ingestion. Age-matched male TH and the control C57BL/6J (B6) mice were fed either normal diet or high salt diet (HS: 2, 4, and 8% NaCl) to construct the renal function curve. Na/K-ATPase signaling including c-Src and ERK1/2 phosphorylation, as well as protein carbonylation (a commonly used marker for enhanced ROS production), were assessed in the kidney cortex tissues by Western blot. Urinary and plasma Na+ levels were measured by flame photometry. When compared to B6 mice, TH mice developed salt-sensitive hypertension and responded to a high salt diet with a significant rise in systolic blood pressure indicative of a blunted pressure-natriuresis relationship. These findings were evidenced by a decrease in total and fractional Na+ excretion and a right-shifted renal function curve with a reduced slope. This salt-sensitive hypertension correlated with changes in the Na/K-ATPase signaling. Specifically, Na/K-ATPase signaling was not able to be stimulated by HS due to the activated baseline protein carbonylation, phosphorylation of c-Src and ERK1/2. These findings support the emerging view that Na/K-ATPase signaling contributes to metabolic disease and suggest that malfunction of the Na/K-ATPase signaling may promote the development of salt-sensitive hypertension in obesity. The increased basal level of renal Na/K-ATPase-dependent redox signaling may be responsible for the development of salt-sensitive hypertension in polygenic obese TH mice.


2021 ◽  
pp. 102796
Author(s):  
Bryan K. Becker ◽  
Jermaine G. Johnston ◽  
Carolyn Young ◽  
Alfredo A. Torres Rodriguez ◽  
Chunhua Jin ◽  
...  

2002 ◽  
Vol 283 (5) ◽  
pp. F1132-F1141 ◽  
Author(s):  
Violeta Alvarez ◽  
Yasmir Quiroz ◽  
Mayerly Nava ◽  
Héctor Pons ◽  
Bernardo Rodríguez-Iturbe

Recent evidence suggests that salt-sensitive hypertension develops as a consequence of renal infiltration with immunocompetent cells. We investigated whether proteinuria, which is known to induce interstitial nephritis, causes salt-sensitive hypertension. Female Lewis rats received 2 g of BSA intraperitoneally daily for 2 wk. After protein overload (PO), 6 wk of a high-salt diet induced hypertension [systolic blood pressure (SBP) = 156 ± 11.8 mmHg], whereas rats that remained on a normal-salt diet and control rats (without PO) on a high-salt diet were normotensive. Administration of mycophenolate mofetil (20 mg · kg−1 · day−1) during PO resulted in prevention of proteinuria-related interstitial nephritis, reduction of renal angiotensin II-positive cells and oxidative stress (superoxide-positive cells and renal malondialdehyde content), and resistance to the hypertensive effect of the high-salt diet (SBP = 129 ± 12.2 mmHg). The present studies support the participation of renal inflammatory infiltrate in the pathogenesis of salt-sensitive hypertension and provide a direct link between two risk factors of progressive renal damage: proteinuria and hypertension.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Chrysan J Mohammed ◽  
Fatimah K Khalaf ◽  
Prabhatchandra Dube ◽  
Tyler J Reid ◽  
Jacob A Connolly ◽  
...  

Background: Paraoxonase 3 (Pon3), is one of the three isoforms of the paraoxonase gene family. While Pon1 and Pon2 are widely studied, there is a paucity of knowledge regarding Pon3. Pon3 is synthesized in the liver and can circulate bound to high-density lipoproteins. There is significant expression in the kidney also. Pon3 has the ability to metabolize eicosanoids, which can act as signaling molecules and have known roles in the pathophysiology of some renal diseases. Decreased Pon activity is associated with elevated levels of eicosanoid metabolites and adverse clinical outcomes. We tested the hypothesis that targeted disruption of Pon3 results in elevated levels of pro-inflammatory eicosanoids and progression of renal injury. Methods/ Results: Ten week old male Dahl salt-sensitive (SS rats) and Pon3 mutant rats (SS Pon3 KO) were maintained on 8% high salt diet for eight weeks, to initiate salt-sensitive hypertensive renal disease. Previously we observed that SS Pon3 KO rats on eight weeks high salt diet demonstrated significantly increased phenotypic renal injury and mortality. In the current study, we noted that SS Pon3 KO had significantly decreased (p<0.05) glomerular filtration rate compared to SS wild type. Blood pressure (radiotelemetry) as well as plasma angiotensin and aldosterone (LC-MS/MS) were not different between the two groups after high salt diet. We used targeted lipidomic profiling to determine eicosanoid content in renal cortex from SS Pon3 KO and SS wild type rats at the end of eight weeks of high salt diet. We found that hydroxyl fatty acids 5-HEPE and 5-HETE (5-lipoxygenase dependent arachidonic acid metabolites) were significantly (p<0.05) elevated in the renal cortex of SS Pon3 KO compared to SS wild type rats. In addition to being mediators of inflammation, these metabolites are associated with renal cell injury and death. Furthermore, prostaglandin 6-keto-PGF 1α , which has known links to renal inflammation, was significantly (p<0.05) increased in renal cortex of SS- Pon3 KO compared to SS wild type rats. Conclusion: These findings suggest that targeted deletion of Pon3 increases pro-inflammatory eicosanoids (5-HETE and 5-HEPE) and prostaglandins (6-keto-PGF 1α ), as well as increases renal damage independent of blood pressure.


Sign in / Sign up

Export Citation Format

Share Document