scholarly journals Magnolol Triggers Caspase-Mediated Apoptotic Cell Death in Human Oral Cancer Cells through JNK1/2 and p38 Pathways

Biomedicines ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1295
Author(s):  
Yi-Tzu Chen ◽  
Chiao-Wen Lin ◽  
Chun-Wen Su ◽  
Wei-En Yang ◽  
Chun-Yi Chuang ◽  
...  

Magnolol is a natural compound extracted from Chinese herbal medicine and can induce apoptosis in numerous types of cancer cells. However, the molecular mechanisms of magnolol in oral cancer are still unclear. In this study, we investigated the anti-cancer effects and underlying mechanisms of magnolol in human oral cancer cell lines. Our results exhibited that magnolol inhibited the cell proliferation via inducing the sub-G1 phase and cell apoptosis of HSC-3 and SCC-9 cells. The human apoptosis array and Western blot assay showed that magnolol increased the expression of cleaved caspase-3 proteins and heme oxygenase-1 (HO-1). Moreover, we proved that magnolol induces apoptosis in oral cancer cell lines via the c-Jun N-terminal kinase (JNK)1/2 and p38 pathways. Overall, the current study supports the role for magnolol as a therapeutic approach for oral cancer through JNK1/2- and p38-mediated caspase activation.

2016 ◽  
Vol 15 (04) ◽  
pp. 1650015 ◽  
Author(s):  
G. Jocelin ◽  
A. Arivarasan ◽  
M. Ganesan ◽  
N. Rajendra Prasad ◽  
G. Sasikala

Quantum dots (QDs) are gaining widespread recognition for its luminescence behavior and unique photo physical properties as a bio-marker and inorganic fluorophore. In spite of such rampant advantages, its application is clinically hampered depending on the surface coating decreasing its luminescence efficiency. The present study reports preparation of CdTe QDs capped with biologically active thiol based material, mercaptosuccinic acid (MSA) for diagnosis of oral cancer (KB) cells by acting as a fluorophore marking targeted tumor cells and at the same time exhibiting certain cytotoxic effects. Synthesized MSA coated CdTe QDs is spherical in shape with an average particle size of 3–5[Formula: see text]nm. In vitro, the rapid uptake of MSA CdTe QDs in oral cancer cell lines were assessed through fluorescence microscopy. Further, this study evaluates the therapeutic efficiency of MSA CdTe QDs in human oral cancer cell lines using MTT analysis. MSA CdTe QDs exhibit significant cytotoxicity in oral cancer cells in a dose dependent manner with low IC50 when compared with other raw CdTe QDs. MSA CdTe QDs were also treated with human lymphocytes (normal cells) to assess and compare the toxicity profile of QDs in normal and oral tumors. The results of our present study strengthen our hypothesis of using MSA CdTe QDs as detector for tracking and fluorescence imaging of oral cancer cells and exhibiting sufficient cytotoxicity in them.


Author(s):  
Anirudh Menon ◽  
Vishnu Priya V ◽  
Gayathri R

<p>ABSTRACT<br />Objective: This study aims at performing a preliminary phytochemical analysis to evaluate the phytochemical composition of pineapple extract and<br />its cytotoxicity potential on oral cancer cell lines.<br />Methods: Preliminary phytochemical analysis of pineapple extract was done, 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide<br />assay for evaluating the cytotoxicity potential of the extract on oral cancer cell lines was performed.<br />Results: Phytoconstituents such as flavonoids, coumarins, and phenols were present in the pineapple extract. The extract also exhibited increased<br />cytotoxicity with increased concentration.<br />Conclusion: This study is conducted to see if pineapple extract is effective in treating oral cancer in a natural way instead of harmful treatments.<br />Keywords: Cytotoxicity, Pineapple extract, Anticancer drug.</p><p> </p>


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3755 ◽  
Author(s):  
James Knockleby ◽  
Bruno Pradines ◽  
Mathieu Gendrot ◽  
Joel Mosnier ◽  
Thanh Tam Nguyen ◽  
...  

Natural products remain a viable source of novel therapeutics, and as detection and extraction techniques improve, we can identify more molecules from a broader set of plant tissues. The aim of this study was an investigation of the cytotoxic and anti-plasmodial activities of the methanol extract from Stephania dielsiana Y.C. Wu leaves and its isolated compounds. Our study led to the isolation of seven alkaloids, among which oxostephanine (1) is the most active against several cancer cell lines including HeLa, MDA-MB231, MDA-MB-468, MCF-7, and non-cancer cell lines, such as 184B5 and MCF10A, with IC50 values ranging from 1.66 to 4.35 μM. Morever, oxostephanine (1) is on average two-fold more active against cancer cells than stephanine (3), having a similar chemical structure. Cells treated with oxostephanine (1) are arrested at G2/M cell cycle, followed by the formation of aneuploidy and apoptotic cell death. The G2/M arrest appears to be due, at least in part, to the inactivation of Aurora kinases, which is implicated in the onset and progression of many forms of human cancer. An in-silico molecular modeling study suggests that oxostephanine (1) binds to the ATP binding pocket of Aurora kinases to inactivate their activities. Unlike oxostephanine (1), thailandine (2) is highly effective against only the triple-negative MDA-MB-468 breast cancer cells. However, it showed excellent selectivity against the cancer cell line when compared to its effects on non-cancer cells. Furthermore, thailandine (2) showed excellent anti-plasmodial activity against both chloroquine-susceptible 3D7 and chloroquine-resistant W2 Plasmodium falciparum strains. The structure–activity relationship of isolated compound was also discussed in this study. The results of this study support the traditional use of Stephania dielsiana Y.C. Wu and the lead molecules identified can be further optimized for the development of highly effective and safe anti-cancer and anti-plasmodial drugs.


2017 ◽  
Vol 84 ◽  
pp. 94-99 ◽  
Author(s):  
Hyun-Ju Yu ◽  
Ji-Ae Shin ◽  
In-Hyoung Yang ◽  
Dong-Hoon Won ◽  
Chi Hyun Ahn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document