scholarly journals Sirtuin 3 (SIRT3) Pathways in Age-Related Cardiovascular and Neurodegenerative Diseases

Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1574
Author(s):  
Ciprian N. Silaghi ◽  
Marius Farcaș ◽  
Alexandra M. Crăciun

Age-associated cardiovascular and neurodegenerative diseases lead to high morbidity and mortality around the world. Sirtuins are vital enzymes for metabolic adaptation and provide protective effects against a wide spectrum of pathologies. Among sirtuins, mitochondrial sirtuin 3 (SIRT3) is an essential player in preserving the habitual metabolic profile. SIRT3 activity declines as a result of aging-induced changes in cellular metabolism, leading to increased susceptibility to endothelial dysfunction, hypertension, heart failure and neurodegenerative diseases. Stimulating SIRT3 activity via lifestyle, pharmacological or genetic interventions could protect against a plethora of pathologies and could improve health and lifespan. Thus, understanding how SIRT3 operates and how its protective effects could be amplified, will aid in treating age-associated diseases and ultimately, in enhancing the quality of life in elders.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Gunnar K. Gouras

Age-related misfolding and aggregation of disease-linked proteins in selective brain regions is a characteristic of neurodegenerative diseases. Although neuropathological aggregates that characterize these various diseases are found at sites other than synapses, increasing evidence supports the idea that synapses are where the pathogenesis begins. Understanding these diseases is hampered by our lack of knowledge of what the normal functions of these proteins are and how they are affected by aging. Evidence has supported the idea that neurodegenerative disease-linked proteins have a common propensity for prion protein-like cell-to-cell propagation. However, it is not thought that the prion-like quality of these proteins/peptides that allows their cell-to-cell transmission implies a role for human-to-human spread in common age-related neurodegenerative diseases. It will be important to better understand the molecular and cellular mechanisms governing the role of these aggregating proteins in neural function, especially at synapses, how their propagation occurs and how pathogenesis is promoted by aging.


2020 ◽  
Author(s):  
Claudia Strafella ◽  
Valerio Caputo ◽  
Andrea Termine ◽  
Shila Barati ◽  
Carlo Caltagirone ◽  
...  

Abstract In the present study, we investigated the distribution of genetic variations in IL6 and IL6R genes, which may be employed as prognostic and pharmacogenetic biomarkers for COVID-19 and neurodegenerative diseases. The study was performed on 271 samples representative of the Italian general population and identified seven variants (rs140764737, rs142164099, rs2069849, rs142759801, rs190436077, rs148171375, rs13306435) in IL6 and five variants (rs2228144, rs2229237, rs2228145, rs28730735, rs143810642) within IL6R, respectively. These variants have been predicted to affect the expression and binding ability of IL6 and IL6R. The Ingenuity Pathway Analysis (IPA) showed that IL6 and IL6R appeared to be implicated in several pathogenetic mechanisms associated with COVID19 severity and mortality as well as with neurodegenerative diseases mediated by neuroinflammation. Thus, the availability of IL6-IL6R-related biomarkers for COVID19 disease may be helpful to counteract harmful complications and prevent multi-organ failure. At the same time, IL6-IL6R-related biomarkers could also be useful for assessing the susceptibility and progression of neuroinflammatory disorders and undertake the most suitable treatment strategies to improve patients’ prognosis and quality of life. In conclusion, this study showed how IL6 pleiotropic activity could be exploited to meet different clinical needs and realize precision medicine protocols for chronic, age-related and modern public health emergencies.


Life ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 351
Author(s):  
Claudia Strafella ◽  
Valerio Caputo ◽  
Andrea Termine ◽  
Shila Barati ◽  
Carlo Caltagirone ◽  
...  

In the present study, we investigated the distribution of genetic variations in IL6 and IL6R genes, which may be employed as prognostic and pharmacogenetic biomarkers for COVID-19 and neurodegenerative diseases. The study was performed on 271 samples representative of the Italian general population and identified seven variants (rs140764737, rs142164099, rs2069849, rs142759801, rs190436077, rs148171375, rs13306435) in IL6 and five variants (rs2228144, rs2229237, rs2228145, rs28730735, rs143810642) within IL6R, respectively. These variants have been predicted to affect the expression and binding ability of IL6 and IL6R. Ingenuity Pathway Analysis (IPA) showed that IL6 and IL6R appeared to be implicated in several pathogenetic mechanisms associated with COVID-19 severity and mortality as well as with neurodegenerative diseases mediated by neuroinflammation. Thus, the availability of IL6-IL6R-related biomarkers for COVID-19 may be helpful to counteract harmful complications and prevent multiorgan failure. At the same time, IL6-IL6R-related biomarkers could also be useful for assessing the susceptibility and progression of neuroinflammatory disorders and undertake the most suitable treatment strategies to improve patients’ prognosis and quality of life. In conclusion, this study showed how IL6 pleiotropic activity could be exploited to meet different clinical needs and realize personalized medicine protocols for chronic, age-related and modern public health emergencies.


2013 ◽  
Vol 55 ◽  
pp. 119-131 ◽  
Author(s):  
Bernadette Carroll ◽  
Graeme Hewitt ◽  
Viktor I. Korolchuk

Autophagy is a process of lysosome-dependent intracellular degradation that participates in the liberation of resources including amino acids and energy to maintain homoeostasis. Autophagy is particularly important in stress conditions such as nutrient starvation and any perturbation in the ability of the cell to activate or regulate autophagy can lead to cellular dysfunction and disease. An area of intense research interest is the role and indeed the fate of autophagy during cellular and organismal ageing. Age-related disorders are associated with increased cellular stress and assault including DNA damage, reduced energy availability, protein aggregation and accumulation of damaged organelles. A reduction in autophagy activity has been observed in a number of ageing models and its up-regulation via pharmacological and genetic methods can alleviate age-related pathologies. In particular, autophagy induction can enhance clearance of toxic intracellular waste associated with neurodegenerative diseases and has been comprehensively demonstrated to improve lifespan in yeast, worms, flies, rodents and primates. The situation, however, has been complicated by the identification that autophagy up-regulation can also occur during ageing. Indeed, in certain situations, reduced autophagosome induction may actually provide benefits to ageing cells. Future studies will undoubtedly improve our understanding of exactly how the multiple signals that are integrated to control appropriate autophagy activity change during ageing, what affect this has on autophagy and to what extent autophagy contributes to age-associated pathologies. Identification of mechanisms that influence a healthy lifespan is of economic, medical and social importance in our ‘ageing’ world.


Author(s):  
A. V. Ponomarev

Introduction: Large-scale human-computer systems involving people of various skills and motivation into the information processing process are currently used in a wide spectrum of applications. An acute problem in such systems is assessing the expected quality of each contributor; for example, in order to penalize incompetent or inaccurate ones and to promote diligent ones.Purpose: To develop a method of assessing the expected contributor’s quality in community tagging systems. This method should only use generally unreliable and incomplete information provided by contributors (with ground truth tags unknown).Results:A mathematical model is proposed for community image tagging (including the model of a contributor), along with a method of assessing the expected contributor’s quality. The method is based on comparing tag sets provided by different contributors for the same images, being a modification of pairwise comparison method with preference relation replaced by a special domination characteristic. Expected contributors’ quality is evaluated as a positive eigenvector of a pairwise domination characteristic matrix. Community tagging simulation has confirmed that the proposed method allows you to adequately estimate the expected quality of community tagging system contributors (provided that the contributors' behavior fits the proposed model).Practical relevance: The obtained results can be used in the development of systems based on coordinated efforts of community (primarily, community tagging systems). 


2020 ◽  
Vol 27 (12) ◽  
pp. 1955-1996 ◽  
Author(s):  
Antonio Speciale ◽  
Antonella Saija ◽  
Romina Bashllari ◽  
Maria Sofia Molonia ◽  
Claudia Muscarà ◽  
...  

: Chronic Noncommunicable Diseases (NCDs), mostly represented by cardiovascular diseases, diabetes, chronic pulmonary diseases, cancers, and several chronic pathologies, are one of the main causes of morbidity and mortality, and are mainly related to the occurrence of metabolic risk factors. Anthocyanins (ACNs) possess a wide spectrum of biological activities, such as anti-inflammatory, antioxidant, cardioprotective and chemopreventive properties, which are able to promote human health. Although ACNs present an apparent low bioavailability, their metabolites may play an important role in the in vivo protective effects observed. : This article directly addresses the scientific evidences supporting that ACNs could be useful to protect human population against several NCDs not only acting as antioxidant but through their capability to modulate cell redox-dependent signaling. In particular, ACNs interact with the NF-κB and AP-1 signal transduction pathways, which respond to oxidative signals and mediate a proinflammatory effect, and the Nrf2/ARE pathway and its regulated cytoprotective proteins (GST, NQO, HO-1, etc.), involved in both cellular antioxidant defenses and elimination/inactivation of toxic compounds, so countering the alterations caused by conditions of chemical/oxidative stress. In addition, supposed crosstalks could contribute to explain the protective effects of ACNs in different pathological conditions characterized by an altered balance among these pathways. Thus, this review underlines the importance of specific nutritional molecules for human health and focuses on the molecular targets and the underlying mechanisms of ACNs against various diseases.


2019 ◽  
Vol 16 (1) ◽  
pp. 57-65 ◽  
Author(s):  
Tahereh Farkhondeh ◽  
Hanieh Shaterzadeh Yazdi ◽  
Saeed Samarghandian

Background: The therapeutic strategies to manage neurodegenerative diseases remain limited and it is necessary to discover new agents for their prevention and control. Oxidative stress and inflammation play a main role in the pathogenesis of neurodegenerative diseases. The aim of this study is to review the effects of green tea catechins against the Neurodegenerative Diseases. Methods: In this study, we extensively reviewed all articles on the terms of Green tea, catechins, CNS disorders, and different diseases in PubMed, Science Direct, Scopus, and Google Scholar databases between the years 1990 and 2017. Results: The present study found that catechins, the major flavonoids in green tea, are powerful antioxidants and radical scavengers which possess the potential roles in the management of neurodegenerative diseases. Catechins modulate the cellular and molecular mechanisms through the inflammation-related NF-&amp;#954;B and the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathways. Conclusion: The findings of the present review shows catechins could be effective against neurodegenerative diseases due to their antioxidation and anti-inflammation effects and the involved biochemical pathways including Nrf2 and NF-kB signaling pathways.<P&gt;


Sign in / Sign up

Export Citation Format

Share Document