scholarly journals Probing Conformational Dynamics by Protein Contact Networks: Comparison with NMR Relaxation Studies and Molecular Dynamics Simulations

Biophysica ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 157-167
Author(s):  
Christos T. Chasapis ◽  
Alexios Vlamis-Gardikas

Protein contact networks (PCNs) have been used for the study of protein structure and function for the past decade. In PCNs, each amino acid is considered as a node while the contacts among amino acids are the links/edges. We examined the possible correlation between the closeness centrality measure of amino acids within PCNs and their mobility as known from NMR spin relaxation experiments and molecular dynamic (MD) simulations. The pivotal observation was that plasticity within a protein stretch correlated inversely to closeness centrality. Effects on protein conformational plasticity caused by the formation of disulfide bonds or protein–protein interactions were also identified by the PCN analysis measure closeness centrality and the hereby introduced percentage of closeness centrality perturbation (% CCP). All the comparisons between PCN measures, NMR data, and MDs were performed in a set of proteins of different biological functions and structures: the core protease domain of anthrax lethal factor, the N-terminal RING domain of E3 Ub ligase Arkadia, the reduced and oxidized forms of human thioredoxin 1, and the ubiquitin molecules (Ub) of the catalytic Ub–RING–E3–E2–Ub complex of E3 ligase Ark2.The graph theory analysis of PCNs could thus provide a general method for assessing the conformational dynamics of free proteins and putative plasticity changes between different protein forms (apo/complexed or reduced/oxidized).

2020 ◽  
Vol 14 (3) ◽  
pp. 216-226
Author(s):  
Priyanka Borah ◽  
Venkata S.K. Mattaparthi

Background: Aggregation of misfolded proteins under stress conditions in the cell might lead to several neurodegenerative disorders. Amyloid-beta (Aβ1-42) peptide, the causative agent of Alzheimer’s disease, has the propensity to fold into β-sheets under stress, forming aggregated amyloid plaques. This is influenced by factors such as pH, temperature, metal ions, mutation of residues, and ionic strength of the solution. There are several studies that have highlighted the importance of ionic strength in affecting the folding and aggregation propensity of Aβ1-42 peptide. Objective: To understand the effect of ionic strength of the solution on the aggregation propensity of Aβ1-42 peptide, using computational approaches. Materials and Methods: In this study, Molecular Dynamics (MD) simulations were performed on Aβ1-42 peptide monomer placed in (i) 0 M, (ii) 0.15 M, and (iii) 0.30 M concentration of NaCl solution. To prepare the input files for the MD simulations, we have used the Amberff99SB force field. The conformational dynamics of Aβ1-42 peptide monomer in different ionic strengths of the solutions were illustrated from the analysis of the corresponding MD trajectory using the CPPtraj tool. Results: From the MD trajectory analysis, we observe that with an increase in the ionic strength of the solution, Aβ1-42 peptide monomer shows a lesser tendency to undergo aggregation. From RMSD and SASA analysis, we noticed that Aβ1-42 peptide monomer undergoes a rapid change in conformation with an increase in the ionic strength of the solution. In addition, from the radius of gyration (Rg) analysis, we observed Aβ1-42 peptide monomer to be more compact at moderate ionic strength of the solution. Aβ1-42 peptide was also found to hold its helical secondary structure at moderate and higher ionic strengths of the solution. The diffusion coefficient of Aβ1-42 peptide monomer was also found to vary with the ionic strength of the solution. We observed a relatively higher diffusion coefficient value for Aβ1-42 peptide at moderate ionic strength of the solution. Conclusion: Our findings from this computational study highlight the marked effect of ionic strength of the solution on the conformational dynamics and aggregation propensity of Aβ1-42 peptide monomer.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 99
Author(s):  
Cristian Privat ◽  
Sergio Madurga ◽  
Francesc Mas ◽  
Jaime Rubio-Martínez

Solvent pH is an important property that defines the protonation state of the amino acids and, therefore, modulates the interactions and the conformational space of the biochemical systems. Generally, this thermodynamic variable is poorly considered in Molecular Dynamics (MD) simulations. Fortunately, this lack has been overcome by means of the Constant pH Molecular Dynamics (CPHMD) methods in the recent decades. Several studies have reported promising results from these approaches that include pH in simulations but focus on the prediction of the effective pKa of the amino acids. In this work, we want to shed some light on the CPHMD method and its implementation in the AMBER suitcase from a conformational point of view. To achieve this goal, we performed CPHMD and conventional MD (CMD) simulations of six protonatable amino acids in a blocked tripeptide structure to compare the conformational sampling and energy distributions of both methods. The results reveal strengths and weaknesses of the CPHMD method in the implementation of AMBER18 version. The change of the protonation state according to the chemical environment is presumably an improvement in the accuracy of the simulations. However, the simulations of the deprotonated forms are not consistent, which is related to an inaccurate assignment of the partial charges of the backbone atoms in the CPHMD residues. Therefore, we recommend the CPHMD methods of AMBER program but pointing out the need to compare structural properties with experimental data to bring reliability to the conformational sampling of the simulations.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Raghavendar Reddy Sanganna Gari ◽  
Joel José Montalvo‐Acosta ◽  
George R. Heath ◽  
Yining Jiang ◽  
Xiaolong Gao ◽  
...  

AbstractConformational changes in ion channels lead to gating of an ion-conductive pore. Ion flux has been measured with high temporal resolution by single-channel electrophysiology for decades. However, correlation between functional and conformational dynamics remained difficult, lacking experimental techniques to monitor sub-millisecond conformational changes. Here, we use the outer membrane protein G (OmpG) as a model system where loop-6 opens and closes the β-barrel pore like a lid in a pH-dependent manner. Functionally, single-channel electrophysiology shows that while closed states are favored at acidic pH and open states are favored at physiological pH, both states coexist and rapidly interchange in all conditions. Using HS-AFM height spectroscopy (HS-AFM-HS), we monitor sub-millisecond loop-6 conformational dynamics, and compare them to the functional dynamics from single-channel recordings, while MD simulations provide atomistic details and energy landscapes of the pH-dependent loop-6 fluctuations. HS-AFM-HS offers new opportunities to analyze conformational dynamics at timescales of domain and loop fluctuations.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yogeeshwar Ajjugal ◽  
Kripi Tomar ◽  
D. Krishna Rao ◽  
Thenmalarchelvi Rathinavelan

AbstractBase pair mismatches in DNA can erroneously be incorporated during replication, recombination, etc. Here, the influence of A…A mismatch in the context of 5′CAA·5′TAG sequence is explored using molecular dynamics (MD) simulation, umbrella sampling MD, circular dichroism (CD), microscale thermophoresis (MST) and NMR techniques. MD simulations reveal that the A…A mismatch experiences several transient events such as base flipping, base extrusion, etc. facilitating B–Z junction formation. A…A mismatch may assume such conformational transitions to circumvent the effect of nonisostericity with the flanking canonical base pairs so as to get accommodated in the DNA. CD and 1D proton NMR experiments further reveal that the extent of B–Z junction increases when the number of A…A mismatch in d(CAA)·d(T(A/T)G) increases (1–5). CD titration studies of d(CAA)·d(TAG)n=5 with the hZαADAR1 show the passive binding between the two, wherein, the binding of protein commences with B–Z junction recognition. Umbrella sampling simulation indicates that the mismatch samples anti…+ syn/+ syn…anti, anti…anti & + syn…+ syn glycosyl conformations. The concomitant spontaneous transitions are: a variety of hydrogen bonding patterns, stacking and minor or major groove extrahelical movements (with and without the engagement of hydrogen bonds) involving the mismatch adenines. These transitions frequently happen in anti…anti conformational region compared with the other three regions as revealed from the lifetime of these states. Further, 2D-NOESY experiments indicate that the number of cross-peaks diminishes with the increasing number of A…A mismatches implicating its dynamic nature. The spontaneous extrahelical movement seen in A…A mismatch may be a key pre-trapping event in the mismatch repair due to the accessibility of the base(s) to the sophisticated mismatch repair machinery.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mei Dang ◽  
Yifan Li ◽  
Jianxing Song

AbstractTDP-43 and hnRNPA1 contain tandemly-tethered RNA-recognition-motif (RRM) domains, which not only functionally bind an array of nucleic acids, but also participate in aggregation/fibrillation, a pathological hallmark of various human diseases including amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), alzheimer's disease (AD) and Multisystem proteinopathy (MSP). Here, by DSF, NMR and MD simulations we systematically characterized stability, ATP-binding and conformational dynamics of TDP-43 and hnRNPA1 RRM domains in both tethered and isolated forms. The results reveal three key findings: (1) upon tethering TDP-43 RRM domains become dramatically coupled and destabilized with Tm reduced to only 49 °C. (2) ATP specifically binds TDP-43 and hnRNPA1 RRM domains, in which ATP occupies the similar pockets within the conserved nucleic-acid-binding surfaces, with the affinity slightly higher to the tethered than isolated forms. (3) MD simulations indicate that the tethered RRM domains of TDP-43 and hnRNPA1 have higher conformational dynamics than the isolated forms. Two RRM domains become coupled as shown by NMR characterization and analysis of inter-domain correlation motions. The study explains the long-standing puzzle that the tethered TDP-43 RRM1–RRM2 is particularly prone to aggregation/fibrillation, and underscores the general role of ATP in inhibiting aggregation/fibrillation of RRM-containing proteins. The results also rationalize the observation that the risk of aggregation-causing diseases increases with aging.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 796
Author(s):  
David J. Andlinger ◽  
Pauline Röscheisen ◽  
Claudia Hengst ◽  
Ulrich Kulozik

Understanding aggregation in food protein systems is essential to control processes ranging from the stabilization of colloidal dispersions to the formation of macroscopic gels. Patatin rich potato protein isolates (PPI) have promising techno-functionality as alternatives to established proteins from egg white or milk. In this work, the influence of pH and temperature on the kinetics of PPI denaturation and aggregation was investigated as an option for targeted functionalization. At a slightly acidic pH, rates of denaturation and aggregation of the globular patatin in PPI were fast. These aggregates were shown to possess a low amount of disulfide bonds and a high amount of exposed hydrophobic amino acids (S0). Gradually increasing the pH slowed down the rate of denaturation and aggregation and alkaline pH levels led to an increased formation of disulfide bonds within these aggregates, whereas S0 was reduced. Aggregation below denaturation temperature (Td) favored aggregation driven by disulfide bridge formation. Aggregation above Td led to fast unfolding, and initial aggregation was less determined by disulfide bridge formation. Inter-molecular disulfide formation occurred during extended heating times. Blocking different protein interactions revealed that the formation of disulfide bond linked aggregation is preceded by the formation of non-covalent bonds. Overall, the results help to control the kinetics, morphology, and interactions of potato protein aggregation for potential applications in food systems.


2012 ◽  
Vol 40 (2) ◽  
pp. 419-423 ◽  
Author(s):  
Mikael Akke

Protein conformational dynamics can be critical for ligand binding in two ways that relate to kinetics and thermodynamics respectively. First, conformational transitions between different substates can control access to the binding site (kinetics). Secondly, differences between free and ligand-bound states in their conformational fluctuations contribute to the entropy of ligand binding (thermodynamics). In the present paper, I focus on the second topic, summarizing our recent results on the role of conformational entropy in ligand binding to Gal3C (the carbohydrate-recognition domain of galectin-3). NMR relaxation experiments provide a unique probe of conformational entropy by characterizing bond-vector fluctuations at atomic resolution. By monitoring differences between the free and ligand-bound states in their backbone and side chain order parameters, we have estimated the contributions from conformational entropy to the free energy of binding. Overall, the conformational entropy of Gal3C increases upon ligand binding, thereby contributing favourably to the binding affinity. Comparisons with the results from isothermal titration calorimetry indicate that the conformational entropy is comparable in magnitude to the enthalpy of binding. Furthermore, there are significant differences in the dynamic response to binding of different ligands, despite the fact that the protein structure is virtually identical in the different protein–ligand complexes. Thus both affinity and specificity of ligand binding to Gal3C appear to depend in part on subtle differences in the conformational fluctuations that reflect the complex interplay between structure, dynamics and ligand interactions.


Endocrinology ◽  
1997 ◽  
Vol 138 (2) ◽  
pp. 588-593 ◽  
Author(s):  
Y. Bobovnikova ◽  
P. N. Graves ◽  
H. Vlase ◽  
T. F. Davies

Abstract To study the interaction of TSH receptor (TSHR) autoantibodies with receptor protein, it is necessary first to express the receptor in the proper conformation including the formation of correct disulfide bridges. However, the reducing environment of the Escherichia coli (E. coli) cytoplasm prevents the generation of protein disulfide bonds and limits the solubility and immunoreactivity of recombinant human TSHR (hTSHR) products. To circumvent these limitations, hTSHR complementary DNA encoding the extracellular domain (hTSHR-ecd; amino acids 21–415) was inserted into the vector pGEX-2TK by directional cloning and used to transform the thioredoxin reductase mutant strain of E. coli (Ad494), which allowed formation of disulfide bonds in the cytoplasm. After induction, the expressed soluble hTSHR-ecd fusion protein was detected by Western blot analysis using a monoclonal antibody directed against hTSHR amino acids 21–35. This showed that over 50% of the expressed hTSHR-ecd was soluble in contrast to expression in a wild-type E. coli (strain αF′), where the majority of the recombinant receptor was insoluble. The soluble recombinant receptor was affinity purified and characterized. Under nonreducing SDS-PAGE conditions, the soluble hTSHR-ecd migrated as refolded, disulfide bond-stabilized, multimeric species, whose formation was independent of fusion partner protein. This product was found to be biologically active as evidenced by the inhibition of the binding of 125I-TSH to the full-length hTSHR expressed in transfected CHO cells and was used to develop a competitive capture enzyme-linked immunosorbent assay for mapping of hTSHR antibody epitopes. Hence, hTSHR-ecd produced in bacteria with a thioredoxin reductase mutation was found to be highly soluble and biologically relevant.


RSC Advances ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 1320-1331
Author(s):  
Shahzaib Ahamad ◽  
Hema Kanipakam ◽  
Vijay Kumar ◽  
Dinesh Gupta

MD simulations of TTBK2 mutants to study its impact on stability of the protein.


Sign in / Sign up

Export Citation Format

Share Document