scholarly journals State-of-the-Art Optical Microfiber Coupler Sensors for Physical and Biochemical Sensing Applications

Biosensors ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 179
Author(s):  
Maolin Dai ◽  
Zhenmin Chen ◽  
Yuanfang Zhao ◽  
Manthangal Sivanesan Aruna Gandhi ◽  
Qian Li ◽  
...  

An optical fiber coupler is a simple and fundamental component for fiber optic technologies that works by reducing the fiber diameter to hundred nanometers or several micrometers. The microfiber coupler (MFC) has regained interest in optical fiber sensing in recent years. The subwavelength diameter rationales vast refractive index (RI) contrast between microfiber “core” and surrounding “cladding”, a large portion of energy transmits in the form of an evanescent wave over the fiber surface that determines the MFC ultrasensitive to local environmental changes. Consequently, MFC has the potential to develop as a sensor. With the merits of easy fabrication, low cost and compact size, numerous researches have been carried out on different microfiber coupler configurations for various sensing applications, such as refractive index (RI), temperature, humidity, magnetic field, gas, biomolecule, and so on. In this manuscript, the fabrication and operation principle of an MFC are elaborated and recent advances of MFC-based sensors for scientific and technological applications are comprehensively reviewed.

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 81
Author(s):  
Chuanxin Teng ◽  
Rui Min ◽  
Jie Zheng ◽  
Shijie Deng ◽  
Maosen Li ◽  
...  

The simple and highly sensitive measurement of the refractive index (RI) of liquids is critical for designing the optical instruments and important in biochemical sensing applications. Intensity modulation-based polymer optical fiber (POF) RI sensors have a lot of advantages including low cost, easy fabrication and operation, good flexibility, and working in the visible wavelength. In this review, recent developments of the intensity modulation POF-based RI sensors are summarized. The materials of the POF and the working principle of intensity modulation are introduced briefly. Moreover, the RI sensing performance of POF sensors with different structures including tapered, bent, and side-polished structures, among others, are presented in detail. Finally, the sensing performance for different structures of POF-based RI sensors are compared and discussed.


2020 ◽  
Vol 307 ◽  
pp. 70-77
Author(s):  
Affa Rozana Abdul Rashid ◽  
A.N.A. Latiff ◽  
Wan Maisarah Mukhtar ◽  
Nur Athirah Mohd Taib ◽  
Syahida Suhaimi ◽  
...  

Plastic optical fiber sensing that coated with ZnO is developed and its interaction with ethanol and methanol solution is investigated. ZnO is synthesized sonochemically by using the bath type sonicator. The optical properties such as transmittance, absorbance and refractive index of ZnO is determined by using ultraviolet-visible (UV-Vis) spectrophotometer. Then, the cladding of plastic optical fiber (POF) is etched by using acetone solution, sand paper and deionized water. The unclad region is coated with ZnO and being immersed in the solution of ethanol and methanol in the range from 0 v/v% to 50 v/v%. The performance of ZnO coated POF is achieved by obtaining the power output value that transmitted via power meter. The result of this research is as the alcohol concentration increase, the power output value increase. Refractive index of ZnO is varied due to interaction between modified-cladding area and alcohol. Besides that, more light propagates inside the fiber when the sensor is tested under methanol solution compare to ethanol. Thus, the power output ratio increments as well as the sensor efficiency and shows the effectiveness of POF sensor to detect varied alcohol concentration.


2021 ◽  
Author(s):  
Jun He ◽  
Baijie Xu ◽  
Xizhen Xu ◽  
Changrui Liao ◽  
Yiping Wang

AbstractFiber Bragg grating (FBG) is the most widely used optical fiber sensor due to its compact size, high sensitivity, and easiness for multiplexing. Conventional FBGs fabricated by using an ultraviolet (UV) laser phase-mask method require the sensitization of the optical fiber and could not be used at high temperatures. Recently, the fabrication of FBGs by using a femtosecond laser has attracted extensive interests due to its excellent flexibility in creating FBGs array or special FBGs with complex spectra. The femtosecond laser could also be used for inscribing various FBGs on almost all fiber types, even fibers without any photosensitivity. Such femtosecond-laser-induced FBGs exhibit excellent thermal stability, which is suitable for sensing in harsh environment. In this review, we present the historical developments and recent advances in the fabrication technologies and sensing applications of femtosecond-laser-inscribed FBGs. Firstly, the mechanism of femtosecond-laser-induced material modification is introduced. And then, three different fabrication technologies, i.e., femtosecond laser phase mask technology, femtosecond laser holographic interferometry, and femtosecond laser direct writing technology, are discussed. Finally, the advances in high-temperature sensing applications and vector bending sensing applications of various femtosecond-laser-inscribed FBGs are summarized. Such femtosecond-laser-inscribed FBGs are promising in many industrial areas, such as aerospace vehicles, nuclear plants, oil and gas explorations, and advanced robotics in harsh environments.


2020 ◽  
Vol 10 (14) ◽  
pp. 4845
Author(s):  
Xiujuan Zhong ◽  
Li Ma ◽  
Guolu Yin ◽  
Mengyu Gan ◽  
Yong Wei

An optical fiber localized surface plasmon resonance (LSPR) sensor was proposed and experimentally demonstrated to detect Hg2+ ions by functionalizing the optical fiber surface with gold nanoparticles (AuNPs) and chitosan (CS)/poly acrylic acid (PAA) bilayers. A flame-brushing technology was proposed to post-process the polydimethyl diallyl ammonium chloride(PDDA)-templated nanoparticles, avoiding the aggregation of AuNPs and achieving well-dispersed AuNPs arrays. LSPR stimulated by the AuNPs is sensitive to changes in the refractive index induced by Hg2+ ions absorption on the CS/PAA bilayers. Experimental results demonstrated that the LSPR peak wavelength linearly shifts with the concentrations of Hg2+ ions from 1 to 30 μM with a sensitivity of around 0.51 nm/ppm. The sensor also exhibits good specificity and longtime stability.


2020 ◽  
Vol 10 (4) ◽  
pp. 353-363
Author(s):  
Lanting Ji ◽  
Shuqing Yang ◽  
Rongna Shi ◽  
Yujie Fu ◽  
Juan Su ◽  
...  

Abstract A waveguide coupled surface plasmon sensor for detection of liquid with high refractive index (RI) is designed based on polymer materials. The effects of variation of the thickness of the Au film, polymethyl methacrylate (PMMA) buffer, and waveguide layer on the sensing performance of the waveguide are comprehensively investigated by using the finite difference method. Numerical simulations show that a thinner gold film gives rise to a more sensitive structure, while the variation of the thickness of the PMMA buffer and waveguide layer has a little effect on the sensitivity. For liquid with high RI, the sensitivity of the sensor increases significantly. When RI of liquid to be measured increases from 1.45 to 1.52, the sensitivity is as high as 4518.14nm/RIU, and a high figure of merit of 114.07 is obtained. The waveguide coupled surface plasmon RI sensor shows potential applications in the fields of environment, industry, and agriculture sensing with the merits of compact size, low cost, and high integration density.


Sign in / Sign up

Export Citation Format

Share Document