scholarly journals The Effect of Haematocrit on Measurement of the Mid-Infrared Refractive Index of Plasma in Whole Blood

Biosensors ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 417
Author(s):  
David J. Rowe ◽  
Daniel R. Owens ◽  
Suzanne L. Parker ◽  
Saul N. Faust ◽  
James S. Wilkinson ◽  
...  

Recent advances suggest that miniaturised mid-infrared (MIR) devices could replace more time-consuming, laboratory-based techniques for clinical diagnostics. This work uses Fourier transform infrared spectroscopy to show that the MIR complex refractive index of whole blood varies across a range of haematocrit. This indicates that the use of an evanescent measurement is not sufficient to optically exclude the cellular content of blood in the MIR, as previously assumed. Here, spectral refractive index data is presented in two ways. First, it is given as whole blood with varying haematocrit. Second, it is given as the percentage error that haematocrit introduces to plasma. The maximum error in the effective plasma refractive index due to the haematocrit of healthy adults was 0.25% for the real part n and 11% for the imaginary part k. This implies that calibration measurements of haematocrit can be used to account for errors introduced by the cellular content, enabling plasma spectra and analyte concentrations to be indirectly calculated from a whole blood sample. This methodological advance is of clinical importance as plasma concentration of analytes such as drugs can be determined using MIR without the preprocessing of whole blood.

2012 ◽  
Vol 20 (2) ◽  
pp. 1172 ◽  
Author(s):  
J. Teissier ◽  
S. Laurent ◽  
C. Manquest ◽  
C. Sirtori ◽  
A. Bousseksou ◽  
...  

2021 ◽  
Vol 2 (6) ◽  
pp. 240
Author(s):  
Joseph E. Roser ◽  
Alessandra Ricca ◽  
Richard J. Cartwright ◽  
Cristina Dalle Ore ◽  
Dale P. Cruikshank

Abstract A near-IR absorption band at 2.2 μm linked to ammonia-containing ice has been detected on icy bodies throughout the solar system and appears in the extensive volume of data for Pluto and Charon returned by New Horizons. This band is an important clue for understanding the abundance of ammonia and ammoniated compounds on the surface of outer solar system bodies and requires new laboratory data for its full analysis. To satisfy this data need, the complex refractive index of amorphous ammonia ice was calculated from experimental infrared transmission spectra with ice deposition and measurements conducted at 40 K, a characteristic surface temperature for outer solar system bodies. The measured imaginary part of the complex refractive index and associated band strength calculations are generally larger than prior published values for amorphous ammonia ice at 30 K. The complex refractive index for amorphous ammonia at 40 K computed in the mid-infrared region (2.5–22.73 μm) will also be valuable for interpreting observations of both solar system and astrophysical sources anticipated with the Near InfraRed Spectrograph and Mid-Infrared Instrument on the James Webb Space Telescope.


2019 ◽  
Vol 629 ◽  
pp. A112 ◽  
Author(s):  
B. M. Giuliano ◽  
A. A. Gavdush ◽  
B. Müller ◽  
K. I. Zaytsev ◽  
T. Grassi ◽  
...  

Context. Reliable, directly measured optical properties of astrophysical ice analogues in the infrared and terahertz (THz) range are missing from the literature. These parameters are of great importance to model the dust continuum radiative transfer in dense and cold regions, where thick ice mantles are present, and are necessary for the interpretation of future observations planned in the far-infrared region. Aims. Coherent THz radiation allows for direct measurement of the complex dielectric function (refractive index) of astrophysically relevant ice species in the THz range. Methods. We recorded the time-domain waveforms and the frequency-domain spectra of reference samples of CO ice, deposited at a temperature of 28.5 K and annealed to 33 K at different thicknesses. We developed a new algorithm to reconstruct the real and imaginary parts of the refractive index from the time-domain THz data. Results. The complex refractive index in the wavelength range 1 mm–150 μm (0.3–2.0 THz) was determined for the studied ice samples, and this index was compared with available data found in the literature. Conclusions. The developed algorithm of reconstructing the real and imaginary parts of the refractive index from the time-domain THz data enables us, for the first time, to determine the optical properties of astrophysical ice analogues without using the Kramers–Kronig relations. The obtained data provide a benchmark to interpret the observational data from current ground-based facilities as well as future space telescope missions, and we used these data to estimate the opacities of the dust grains in presence of CO ice mantles.


Optik ◽  
2019 ◽  
Vol 194 ◽  
pp. 163078
Author(s):  
Xu Meng ◽  
Chen Yun-yun ◽  
Cui Fen-ping

Photonics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 41
Author(s):  
Najat Andam ◽  
Siham Refki ◽  
Hidekazu Ishitobi ◽  
Yasushi Inouye ◽  
Zouheir Sekkat

The determination of optical constants (i.e., real and imaginary parts of the complex refractive index (nc) and thickness (d)) of ultrathin films is often required in photonics. It may be done by using, for example, surface plasmon resonance (SPR) spectroscopy combined with either profilometry or atomic force microscopy (AFM). SPR yields the optical thickness (i.e., the product of nc and d) of the film, while profilometry and AFM yield its thickness, thereby allowing for the separate determination of nc and d. In this paper, we use SPR and profilometry to determine the complex refractive index of very thin (i.e., 58 nm) films of dye-doped polymers at different dye/polymer concentrations (a feature which constitutes the originality of this work), and we compare the SPR results with those obtained by using spectroscopic ellipsometry measurements performed on the same samples. To determine the optical properties of our film samples by ellipsometry, we used, for the theoretical fits to experimental data, Bruggeman’s effective medium model for the dye/polymer, assumed as a composite material, and the Lorentz model for dye absorption. We found an excellent agreement between the results obtained by SPR and ellipsometry, confirming that SPR is appropriate for measuring the optical properties of very thin coatings at a single light frequency, given that it is simpler in operation and data analysis than spectroscopic ellipsometry.


2001 ◽  
Vol 32 ◽  
pp. 683-684
Author(s):  
M. EBERT ◽  
S. WEINBRUCH ◽  
A. RAUSCH ◽  
G. GORZAWSKI ◽  
H. WEX ◽  
...  

2021 ◽  
Vol 13 (4) ◽  
pp. 723
Author(s):  
Hossain Zadhoush ◽  
Antonios Giannopoulos ◽  
Iraklis Giannakis

Estimating the permittivity of heterogeneous mixtures based on the permittivity of their components is of high importance with many applications in ground penetrating radar (GPR) and in electrodynamics-based sensing in general. Complex Refractive Index Model (CRIM) is the most mainstream approach for estimating the bulk permittivity of heterogeneous materials and has been widely applied for GPR applications. The popularity of CRIM is primarily based on its simplicity while its accuracy has never been rigorously tested. In the current study, an optimised shape factor is derived that is fine-tuned for modelling the dielectric properties of concrete. The bulk permittivity of concrete is expressed with respect to its components i.e., aggregate particles, cement particles, air-voids and volumetric water fraction. Different combinations of the above materials are accurately modelled using the Finite-Difference Time-Domain (FDTD) method. The numerically estimated bulk permittivity is then used to fine-tune the shape factor of the CRIM model. Then, using laboratory measurements it is shown that the revised CRIM model over-performs the default shape factor and provides with more accurate estimations of the bulk permittivity of concrete.


Sign in / Sign up

Export Citation Format

Share Document