scholarly journals Hierarchical Thin Film Architectures for Enhanced Sensor Performance: Liquid Crystal-Mediated Electrochemical Synthesis of Nanostructured Imprinted Polymer Films for the Selective Recognition of Bupivacaine

Biosensors ◽  
2014 ◽  
Vol 4 (2) ◽  
pp. 90-110 ◽  
Author(s):  
Subramanian Suriyanarayanan ◽  
Hazrat Nawaz ◽  
Natacha Ndizeye ◽  
Ian Nicholls
Polymers ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 736
Author(s):  
Kyutae Seo ◽  
Hyo Kang

We synthesized a series of polystyrene derivatives that were modified with precursors of liquid crystal (LC) molecules, such as 4-ethyloxyphenol (homopolymer PEOP and copolymer PEOP#; # = 20, 40, 60, and 80, where # indicates the molar fraction of 4-ethyloxyphenoxymethyl in the side chain), 4-n-butyloxyphenol (PBOP), 4-n-hexyloxyphenol (PHOP), and 4-n-octyloxyphenol (POOP), via polymer modification reaction to investigate the orientation of LC molecules on polymer films, exhibiting part of the LC molecular structure. LC molecules showed a stable and uniform vertical orientation in LC cells fabricated with polymers that have 4-ethyloxyphenoxymethyl in the range of 40–100 mol%. In addition, similar results were obtained in LC cells fabricated with homopolymers of PEOP, PBOP, PHOP, and POOP. The vertical orientation of LC molecules in LC cells fabricated with polymer films correlated to the surface energy of polymer films. For example, vertical LC orientation was observed when the total surface energies of the polymer films were lower than approximately 43.2 mJ/m2. Good alignment stabilities were observed at 150 °C and 20 J/cm2 of ultraviolet irradiation for LC cells fabricated with PEOP film.


1999 ◽  
Vol 38 (Part 1, No. 1A) ◽  
pp. 95-100 ◽  
Author(s):  
Yoriko Morita ◽  
Jay E. Stockley ◽  
Kristina M. Johnson ◽  
Eckhard Hanelt ◽  
Frank Sandmeyer

Nanoscale ◽  
2014 ◽  
Vol 6 (7) ◽  
pp. 3854 ◽  
Author(s):  
Xinping Zhang ◽  
Jian Zhang ◽  
Yujian Sun ◽  
Huai Yang ◽  
Haifeng Yu

2014 ◽  
Vol 809-810 ◽  
pp. 297-301
Author(s):  
Ping Rui Meng ◽  
Liang Bo Li

In order to selectively separate luteolin from its crude solution, we synthesized luteolin molecular imprinted polymers (LMIP) with high recognition specificity for luteolin, using an imprinting technique. Luteolin was used as template, methanol as solvent, and N,N’-methylenebisacrylamide (MBAA) as the cross-linking. Then prepared LMIP were characterized and evaluated by scanning electron microscope (SEM) and equilibrium absorption experiments. The results showed that the cavities matching with the template molecules in size and structure were present in the LMIP. Adsorption dynamics analysis suggested that, when the adsorption time reached 4 h, the adsorption process had reached balance and the adsorption capacity was at steady state. The selective adsorption amount reached at 35.65 umol/g for the LMIP, while a lower value of 11.68 umol/g for the blank polymer (i.e. nontemplated). Relative to the corresponding blank polymer, LMIP had an excellent recognition to luteolin in methanol solution. Keywords: Molecular imprinting, Molecular recognition, Adsorbent, Luteolin


Sign in / Sign up

Export Citation Format

Share Document