scholarly journals Advances in Large Scale Flood Monitoring and Detection

Keyword(s):  
2018 ◽  
Vol 22 (5) ◽  
pp. 2867-2880 ◽  
Author(s):  
Ben T. Gouweleeuw ◽  
Andreas Kvas ◽  
Christian Gruber ◽  
Animesh K. Gain ◽  
Thorsten Mayer-Gürr ◽  
...  

Abstract. Two daily gravity field solutions based on observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are evaluated against daily river runoff data for major flood events in the Ganges–Brahmaputra Delta (GBD) in 2004 and 2007. The trends over periods of a few days of the daily GRACE data reflect temporal variations in daily river runoff during major flood events. This is especially true for the larger flood in 2007, which featured two distinct periods of critical flood level exceedance in the Brahmaputra River. This first hydrological evaluation of daily GRACE gravity field solutions based on a Kalman filter approach confirms their potential for gravity-based large-scale flood monitoring. This particularly applies to short-lived, high-volume floods, as they occur in the GBD with a 4–5-year return period. The release of daily GRACE gravity field solutions in near-real time may enable flood monitoring for large events.


Author(s):  
Marco Chini ◽  
Ramona Pelich ◽  
Renaud Hostache ◽  
Patrick Matgen ◽  
Christian Bossung ◽  
...  

Author(s):  
T. A. Gasica ◽  
F. Bioresita ◽  
A. Murtiyoso

Abstract. Temporary surface water monitoring can provide accurate and reliable information about the spatio-temporal level of surface water. This is very important for various environmental applications, such as flood monitoring. Remote sensing data such as Synthetic Aperture Radar (SAR) is very useful for a large-scale flood monitoring. SAR sensors offer clear advantages by providing their own sources of illumination, thus being able to operate in nearly all-weather/day-night conditions. About 30% disasters which occurred in Indonesia are floods. This hazard has become a recurring disaster that takes place annually. A massive flash flood struck Sentani in the Jayapura Regency in the province of Papua, Indonesia on 16 March 2019, causing 104 deaths. The objective of this work is thus to map temporary surface water (flood) of the Sentani flash flooding event in Indonesia using Sentinel-1 SAR imagery. Sentinel-1 IW GRD and SLC (dual polarimetry) on the event period were used. With two types of Sentinel-1 data, this research produced temporary surface water map using rapid mapping method and SAR polarimetry method. Comparing the results, the similarity of SAR polarimetry method to rapid mapping method is about 39%. Based on reference data, rapid mapping result show better accuracy (82%) than SAR polarimetry method (62%). In addition, processing SLC data needs longer time and higher performance than processing GRD data. Thus, for rapid mapping, it is better to use only Sentinel-1 GRD data.


2017 ◽  
Author(s):  
Ben T. Gouweleeuw ◽  
Andreas Kvas ◽  
Christian Grüber ◽  
Animesh K. Gain ◽  
Thorsten Mayer-Gürr ◽  
...  

Abstract. Two daily gravity field solutions based on observations from the Gravity Recovery and Climate Experiment (GRACE) satellite mission are evaluated against daily river runoff data for major flood events in the Ganges-Brahmaputra Delta (GBD) in 2004 and 2007. The trends over periods of a few days of the daily GRACE data reflect temporal variations in daily river runoff during major flood events. This is especially true for the larger flood in 2007, which featured two distinct periods of critical flood level exceedance in the Brahmaputra River. This first hydrological evaluation of daily GRACE gravity field solutions based on a Kalman filter approach confirms their potential for gravity-based large-scale flood monitoring. This particularly applies to short-lived, high-volume floods, as they occur in the GBD with a 4–5 year return period. The release of daily GRACE gravity field solutions in near real-time may enable flood monitoring for large events.


1999 ◽  
Vol 173 ◽  
pp. 243-248
Author(s):  
D. Kubáček ◽  
A. Galád ◽  
A. Pravda

AbstractUnusual short-period comet 29P/Schwassmann-Wachmann 1 inspired many observers to explain its unpredictable outbursts. In this paper large scale structures and features from the inner part of the coma in time periods around outbursts are studied. CCD images were taken at Whipple Observatory, Mt. Hopkins, in 1989 and at Astronomical Observatory, Modra, from 1995 to 1998. Photographic plates of the comet were taken at Harvard College Observatory, Oak Ridge, from 1974 to 1982. The latter were digitized at first to apply the same techniques of image processing for optimizing the visibility of features in the coma during outbursts. Outbursts and coma structures show various shapes.


1994 ◽  
Vol 144 ◽  
pp. 29-33
Author(s):  
P. Ambrož

AbstractThe large-scale coronal structures observed during the sporadically visible solar eclipses were compared with the numerically extrapolated field-line structures of coronal magnetic field. A characteristic relationship between the observed structures of coronal plasma and the magnetic field line configurations was determined. The long-term evolution of large scale coronal structures inferred from photospheric magnetic observations in the course of 11- and 22-year solar cycles is described.Some known parameters, such as the source surface radius, or coronal rotation rate are discussed and actually interpreted. A relation between the large-scale photospheric magnetic field evolution and the coronal structure rearrangement is demonstrated.


2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.


Author(s):  
Simon Thomas

Trends in the technology development of very large scale integrated circuits (VLSI) have been in the direction of higher density of components with smaller dimensions. The scaling down of device dimensions has been not only laterally but also in depth. Such efforts in miniaturization bring with them new developments in materials and processing. Successful implementation of these efforts is, to a large extent, dependent on the proper understanding of the material properties, process technologies and reliability issues, through adequate analytical studies. The analytical instrumentation technology has, fortunately, kept pace with the basic requirements of devices with lateral dimensions in the micron/ submicron range and depths of the order of nonometers. Often, newer analytical techniques have emerged or the more conventional techniques have been adapted to meet the more stringent requirements. As such, a variety of analytical techniques are available today to aid an analyst in the efforts of VLSI process evaluation. Generally such analytical efforts are divided into the characterization of materials, evaluation of processing steps and the analysis of failures.


Sign in / Sign up

Export Citation Format

Share Document