scholarly journals Effect of Age in Auditory Go/No-Go Tasks: A Magnetoencephalographic Study

2020 ◽  
Vol 10 (10) ◽  
pp. 667
Author(s):  
Mei-Yin Lin ◽  
Chia-Hsiung Cheng

Response inhibition is frequently examined using visual go/no-go tasks. Recently, the auditory go/no-go paradigm has been also applied to several clinical and aging populations. However, age-related changes in the neural underpinnings of auditory go/no-go tasks are yet to be elucidated. We used magnetoencephalography combined with distributed source imaging methods to examine age-associated changes in neural responses to auditory no-go stimuli. Additionally, we compared the performance of high- and low-performing older adults to explore differences in cortical activation. Behavioral performance in terms of response inhibition was similar in younger and older adult groups. Relative to the younger adults, the older adults exhibited reduced cortical activation in the superior and middle temporal gyrus. However, we did not find any significant differences in cortical activation between the high- and low-performing older adults. Our results therefore support the hypothesis that inhibition is reduced during aging. The variation in cognitive performance among older adults confirms the need for further study on the underlying mechanisms of inhibition.

Author(s):  
Ernest K. Ofori ◽  
Savitha Subramaniam ◽  
Shuaijie Wang ◽  
Tanvi Bhatt

Background: Recent studies demonstrate improvements in both postural stability and mobility among aging populations and those with stroke who are exposed to dance-based exergaming (DBExG). However, age-related deficits and aging with cortical pathology may lead to distinct movement adaptation patterns during DBExG, which could impact therapeutic outcomes.Aim: The aim of this study was to examine the movement kinematics (postural stability and mobility) of healthy older adults, older adults with stroke, and young adults for different paces of dance during DBExG. Method: The study included 33 particpants (11 participant from each group of healthy older adults, older adults with chronic stroke, and healthy young adults) who performed the DBExG using slow- (SP), medium- (MP), and fast-paced (FP) songs with movements in the anteroposterior (AP) and mediolateral (ML) directions. Center of mass (CoM) sway area, excursion (Ex), and peaks as well as hip, knee, and ankle joint excursions were computed. Results: Results of the study revealed that CoM sway areas and Exs were greater for healthy young adults than for older adults with stroke for the SP dance (p < 0.05) and that there were significantly more AP CoM peaks for young adults than for healthy older adults and those with stroke for the FP dance (p < 0.05). Young adults also exhibited greater hip and ankle Exs than older adults with stroke (p < 0.05) for all song paces. Similarly, knee and ankle Exs were greater for healthy older adults than for older adults with stroke for all song paces (p < 0.05). Conclusion: The quantitative evaluation and comparison of the movement patterns presented for the three groups could provide a foundation for both assessing and designing therapeutic DBExG protocols for these populations.


2019 ◽  
Vol 8 (11) ◽  
pp. 1910 ◽  
Author(s):  
Kubica ◽  
Szymura ◽  
Domagalik ◽  
Golda ◽  
Wiecek ◽  
...  

: We sought to investigate whether systematic balance training modulates brain area activity responsible for postural control and influence brain-derived neurotrophic factor (BDNF) mRNA protein expression. Seventy-four older adults were randomly divided into three groups (mean age 65.34 ± 3.79 years, 30 females): Classic balance exercises (CBT), virtual reality balance exercises (VBT), and control (CON). Neuroimaging studies were performed at inclusion and after completion of the training or 12 weeks later (CON). Blood samples were obtained to measure BDNF expression. The study revealed significant interaction of sessions and groups: In the motor imagery (MI) condition for supplementary motor area (SMA) activity (Fat peak = 5.25, p < 0.05); in the action observation (AO) condition for left and right supramarginal gyrus/posterior insula (left: Fat peak = 6.48, p < 0.05; right: Fat peak = 6.92, p < 0.05); in the action observation together with motor imagery (AOMI) condition for the middle occipital gyrus (laterally)/area V5 (left: Fat peak = 6.26, p < 0.05; right: Fat peak = 8.37, p < 0.05), and in the cerebellum–inferior semilunar lobule/tonsil (Fat peak = 5.47, p < 0.05). After the training serum BDNF level has increased in CBT (p < 0.001) and in CBT compared to CON (p < 0.05). Systematic balance training may reverse the age-related cortical over-activations and appear to be a factor mediating neuroplasticity in older adults.


2019 ◽  
Author(s):  
Holly J. Bowen ◽  
Jaclyn H. Ford ◽  
Cheryl L. Grady ◽  
Julia Spaniol

AbstractBoth younger and older adults prioritize reward-associated stimuli in memory, but there has been little research on possible age differences in the neural mechanisms mediating this effect. In the current study, we examine neural activation and functional connectivity in healthy younger and older adults to test the hypothesis that older adults would engage prefrontal regions to a greater extent in the service of reward-enhanced memory. While undergoing MRI, target stimuli were presented after high or low-reward cues. The cues indicated the reward value for successfully recognizing the stimulus on a memory test 24-hours later. We replicated prior findings that both older and younger and adults had better memory for high compared to low-reward stimuli. Critically, in older, but not younger adults, this enhanced subsequent memory for high-reward items was supported by greater connectivity between the caudate and bilateral inferior frontal gyrus. The findings add to the growing literature on motivation-cognition interactions in healthy aging, and provide novel evidence of an age-related shift in the neural underpinnings of reward-motivated encoding.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 425-425
Author(s):  
Lyndsie Koon ◽  
Shraddha Shende ◽  
Wendy Rogers ◽  
Jenny Singleton ◽  
Megan Bayles

Abstract American Sign Language (ASL) is the primary form of communication for approximately 250,000 people in the U.S. (Mitchell et al., 2006). As these individuals age, they may experience challenges in their everyday activities. For example, ASL users rely on visual cues, but have age-related change in vision. Moreover, ASL users may need to utilize technology to communicate with non-ASL users, but the technology may not be suitable/usable for older adults. We explored these issues in the Aging Concerns, Challenges, and Everyday Solution Strategies (ACCESS) study, wherein we interviewed Deaf older adults (N=60) in ASL, who provided insights into unique, everyday challenges they encounter. We will focus on the technology solution strategies they incorporate to address and overcome challenges with daily activities. Understanding how participants think about, adapt, and utilize different technologies can inform future technology design to successfully support diverse, aging populations.


2021 ◽  
Author(s):  
Jiaxin Zhang ◽  
Lin Wang ◽  
Haiyan Hou ◽  
Chunlin Yue ◽  
Liang Wang ◽  
...  

Abstract Background: Although it is well known that aging impairs navigation performance, the underlying mechanisms remain largely unknown. Egocentric strategy requires navigators to remember a series of body-turns without relying on the relationship between environmental cues. Previous study suggested that the egocentric strategy, compared with non-egocentric strategy, was relatively unimpaired during aging. In this study, we aimed to examine strategy use during virtual navigation task and the underlying cognitive supporting mechanisms in older adults.Methods: Thirty young adults and thirty-one older adults were recruited from the local community. This study adapted star maze paradigm using non-immersive virtual environment. Participants moved freely in a star maze with adequate landmarks, and were requested to find a fixed destination. After 9 learning trials, participants were probed in the same virtual star maze but with no salient landmarks. Participants were classified as egocentric or non-egocentric strategy group according to their response in the probe trial. Results: The results revealed that older adults adopting egocentric strategy completed the navigation task as accurate as young adults, whereas older adults using non-egocentric strategy completed the navigation task with more detours and lower accuracy. The relatively well-maintained egocentric strategy in older adults was related to better visuo-spatial ability.Conclusions: Visuo-spatial ability might play an important role in navigation accuracy and navigation strategy of older adults. This study demonstrated the potential value of the virtual star maze in evaluating navigation strategy and visuo-spatial ability in older adults.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S543-S543
Author(s):  
Indira C Turney ◽  
Miguel Arce Rentería ◽  
Anthony G Chesebro ◽  
Juliet M Colon ◽  
Nicole Schupf ◽  
...  

Abstract Socioeconomic disadvantages in childhood has been linked to dementia in late life. However, the underlying pathways through which childhood socioeconomic status (CSES) affects health in old age is unclear. CSES has been linked to age-related differences in regions affected by Alzheimer’s disease (AD; e.g., hippocampus). CSES varies across race/ethnicity; It is critical to examine the relationship between CSES and age-related brain structural changes across diverse aging populations. We used an established proxy for CSES, number of siblings (i.e., sibship size), to examine whether CSES buffered age-related changes in hippocampal volume in a community-based sample of racially/ethnically diverse older adults. Sibship size moderated age-related differences in hippocampal volume in Whites (β=-5.61[-11.09,-0.12]), but not in Blacks and Hispanics. Results indicate that Whites with no sibling (vs. Whites with siblings) show less age-related difference in hippocampal volume. Future analyses will examine other CSES factors (i.e., parental education/occupation) on age-related structural changes across race/ethnicity.


Author(s):  
José A. Morais

Sarcopenia is a progressive and inevitable loss of skeletal muscle mass and strength associated with ageing that places older adults at high risk for adverse health outcomes. Up to of 15% of older adults suffer negative healthcare consequences because of sarcopenia. Furthermore, it is responsible for two to four times greater risk of disability. Expert groups have proposed clinical oriented criteria based on gait speed <0.8 m/s and low handgrip strength before performing muscle mass assessment. Multiple aetiologies are implicated in the development of sarcopenia including age-related, lifestyle, neurodegeneration, hormonal, and inflammation factors. Resistance exercise training and higher than recommended protein intake are two accessible means to counteract sarcopenia. Hormonal interventions, despite amelioration in muscle and fat masses, have not led to significant gains in function. Sarcopenia shares many features with frailty and can be considered as one of its underlying mechanisms.


2021 ◽  
Vol 8 ◽  
Author(s):  
Pan Liu ◽  
Yun Li ◽  
Lina Ma

Frailty is an age-related clinical syndrome that may increase the risk of falls, disability, hospitalization, and death in older adults. Delaying the progression of frailty helps improve the quality of life in older adults. Caloric restriction (CR) may extend lifespan and reduce the risk of age-related diseases. However, few studies have explored the relationship between CR and frailty. In this review, we focused on the impact of CR on frailty and aimed to identify potential associated mechanisms. Although CR may help prevent frailty, further studies are required to determine the underlying mechanisms and specific CR regimens suitable for use in humans.


Author(s):  
Elizabeth R Paitel ◽  
Kristy A Nielson

Aging is accompanied by frontal lobe and non-dominant hemisphere recruitment that supports executive functioning, such as inhibitory control, which is crucial to all cognitive functions. Yet, the spatio-temporal sequence of processing underlying successful inhibition and how it changes with age is understudied. Thus, we assessed N200 (conflict monitoring) and P300 (response inhibition, performance evaluation) event-related potentials (ERPs) in young and healthy older adults during comparably performed successful stop-signal inhibition. We additionally interrogated the continuous spatio-temporal dynamics of N200- and P300-related activation within each group. Young adults had left hemisphere dominant N200, while older adults had overall larger amplitudes and right hemisphere dominance. N200 activation was biphasic in both groups but differed in scalp topography. P300 also differed, with larger right amplitudes in young, but bilateral amplitudes in old, with old larger than young in the left hemisphere. P300 was characterized by an early parieto-occipital peak in both groups, followed by a parietal slow wave only in older adults. A temporally similar but topographically different final wave followed in both groups that showed anterior recruitment in older adults. These findings illuminate differential age-related spatio-temporal recruitment patterns for conflict monitoring and response inhibition that are critically important for understanding age-related compensatory activation.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jia-Xin Zhang ◽  
Lin Wang ◽  
Hai-Yan Hou ◽  
Chun-Lin Yue ◽  
Liang Wang ◽  
...  

Abstract Background Although it is well known that aging impairs navigation performance, the underlying mechanisms remain largely unknown. Egocentric strategy requires navigators to remember a series of body-turns without relying on the relationship between environmental cues. Previous study suggested that the egocentric strategy, compared with non-egocentric strategy, was relatively unimpaired during aging. In this study, we aimed to examine strategy use during virtual navigation task and the underlying cognitive supporting mechanisms in older adults. Methods Thirty young adults and thirty-one older adults were recruited from the local community. This study adapted star maze paradigm using non-immersive virtual environment. Participants moved freely in a star maze with adequate landmarks, and were requested to find a fixed destination. After 9 learning trials, participants were probed in the same virtual star maze but with no salient landmarks. Participants were classified as egocentric or non-egocentric strategy group according to their response in the probe trial. Results The results revealed that older adults adopting egocentric strategy completed the navigation task as accurate as young adults, whereas older adults using non-egocentric strategy completed the navigation task with more detours and lower accuracy. The relatively well-maintained egocentric strategy in older adults was related to better visuo-spatial ability. Conclusions Visuo-spatial ability might play an important role in navigation accuracy and navigation strategy of older adults. This study demonstrated the potential value of the virtual star maze in evaluating navigation strategy and visuo-spatial ability in older adults.


Sign in / Sign up

Export Citation Format

Share Document