scholarly journals Parental Education, Household Income, and Cortical Surface Area among 9–10 Years Old Children: Minorities’ Diminished Returns

2020 ◽  
Vol 10 (12) ◽  
pp. 956
Author(s):  
Shervin Assari

Introduction: Although the effects of parental education and household income on children’s brain development are well established, less is known about possible variation in these effects across diverse racial and ethnic groups. According to the Minorities’ Diminished Returns (MDRs) phenomenon, due to structural racism, social stratification, and residential segregation, parental educational attainment and household income show weaker effects for non-White than White children. Purpose: Built on the MDRs framework and conceptualizing race as a social rather than a biological factor, this study explored racial and ethnic variation in the magnitude of the effects of parental education and household income on children’s whole-brain cortical surface area. Methods: For this cross-sectional study, we used baseline socioeconomic and structural magnetic resonance imaging (sMRI) data of the Adolescent Brain Cognitive Development (ABCD) study. Our analytical sample was 10,262 American children between ages 9 and 10. The independent variables were parental education and household income. The primary outcome was the children’s whole-brain cortical surface area. Age, sex, and family marital status were covariates. Race and ethnicity were the moderators. We used mixed-effects regression models for data analysis as participants were nested within families and study sites. Results: High parental education and household income were associated with larger children’s whole-brain cortical surface area. The effects of high parental education and high household income on children’s whole-brain cortical surface area were modified by race. Compared to White children, Black children showed a diminished return of high parental education on the whole-brain cortical surface area when compared to White children. Asian American children showed weaker effects of household income on the whole-brain cortical surface area when compared to White children. We could not find differential associations between parental education and household income with the whole-brain cortical surface area, when compared to White children, for non-Hispanic and Hispanic children. Conclusions: The effects of parental educational attainment and household income on children’s whole-brain cortical surface area are weaker in non-White than White families. Although parental education and income contribute to children’s brain development, these effects are unequal across racial groups.

Children ◽  
2021 ◽  
Vol 8 (5) ◽  
pp. 412
Author(s):  
Shervin Assari ◽  
Shanika Boyce ◽  
Mohsen Bazargan ◽  
Alvin Thomas ◽  
Ryon Cobb ◽  
...  

Background: Recent studies have shown that parental educational attainment is associated with a larger superior temporal cortical surface area associated with higher reading ability in children. Simultaneously, the marginalization-related diminished returns (MDRs) framework suggests that, due to structural racism and social stratification, returns of parental education are smaller for black and other racial/ethnic minority children compared to their white counterparts. Purpose: This study used a large national sample of 9–10-year-old American children to investigate associations between parental educational attainment, the right and left superior temporal cortical surface area, and reading ability across diverse racial/ethnic groups. Methods: This was a cross-sectional analysis that included 10,817 9–10-year-old children from the Adolescent Brain Cognitive Development (ABCD) study. Parental educational attainment was treated as a five-level categorical variable. Children’s right and left superior temporal cortical surface area and reading ability were continuous variables. Race/ethnicity was the moderator. To adjust for the nested nature of the ABCD data, mixed-effects regression models were used to test the associations between parental education, superior temporal cortical surface area, and reading ability overall and by race/ethnicity. Results: Overall, high parental educational attainment was associated with greater superior temporal cortical surface area and reading ability in children. In the pooled sample, we found statistically significant interactions between race/ethnicity and parental educational attainment on children’s right and left superior temporal cortical surface area, suggesting that high parental educational attainment has a smaller boosting effect on children’s superior temporal cortical surface area for black than white children. We also found a significant interaction between race and the left superior temporal surface area on reading ability, indicating weaker associations for Alaskan Natives, Native Hawaiians, and Pacific Islanders (AIAN/NHPI) than white children. We also found interactions between race and parental educational attainment on reading ability, indicating more potent effects for black children than white children. Conclusion: While parental educational attainment may improve children’s superior temporal cortical surface area, promoting reading ability, this effect may be unequal across racial/ethnic groups. To minimize the racial/ethnic gap in children’s brain development and school achievement, we need to address societal barriers that diminish parental educational attainment’s marginal returns for middle-class minority families. Social and public policies need to go beyond equal access and address structural and societal barriers that hinder middle-class families of color and their children. Future research should test how racism, social stratification, segregation, and discrimination, which shape the daily lives of non-white individuals, take a toll on children’s brains and academic development.


2020 ◽  
Vol 117 (22) ◽  
pp. 12411-12418 ◽  
Author(s):  
Nicholas Judd ◽  
Bruno Sauce ◽  
John Wiedenhoeft ◽  
Jeshua Tromp ◽  
Bader Chaarani ◽  
...  

Genetic factors and socioeconomic status (SES) inequalities play a large role in educational attainment, and both have been associated with variations in brain structure and cognition. However, genetics and SES are correlated, and no prior study has assessed their neural associations independently. Here we used a polygenic score for educational attainment (EduYears-PGS), as well as SES, in a longitudinal study of 551 adolescents to tease apart genetic and environmental associations with brain development and cognition. Subjects received a structural MRI scan at ages 14 and 19. At both time points, they performed three working memory (WM) tasks. SES and EduYears-PGS were correlated (r= 0.27) and had both common and independent associations with brain structure and cognition. Specifically, lower SES was related to less total cortical surface area and lower WM. EduYears-PGS was also related to total cortical surface area, but in addition had a regional association with surface area in the right parietal lobe, a region related to nonverbal cognitive functions, including mathematics, spatial cognition, and WM. SES, but not EduYears-PGS, was related to a change in total cortical surface area from age 14 to 19. This study demonstrates a regional association of EduYears-PGS and the independent prediction of SES with cognitive function and brain development. It suggests that the SES inequalities, in particular parental education, are related to global aspects of cortical development, and exert a persistent influence on brain development during adolescence.


2019 ◽  
Author(s):  
Nicholas Judd ◽  
Bruno Sauce ◽  
John Wiedenhoeft ◽  
Jeshua Tromp ◽  
Bader Chaarani ◽  
...  

AbstractGenetic factors and socioeconomic (SES) inequalities play a large role in educational attainment, and both have been associated with variations in brain structure and cognition. However, genetics and SES are correlated, and no prior study has assessed their neural associations independently. Here we used polygenic score for educational attainment (EduYears-PGS) as well as SES, in a longitudinal study of 551 adolescents, to tease apart genetic and environmental associations with brain development and cognition. Subjects received a structural MRI scan at ages 14 and 19. At both time-points, they performed three working memory (WM) tasks. SES and EduYears-PGS were correlated (r = 0.27) and had both common and independent associations with brain structure and cognition. Specifically, lower SES was related to less total cortical surface area and lower WM. EduYears-PGS was also related to total cortical surface area, but in addition had a regional association with surface area in the right parietal lobe, a region related to non-verbal cognitive functions, including mathematics, spatial cognition, and WM. SES, but not EduYears-PGS, was related to a change in total cortical surface area from age 14 to 19. This is the first study demonstrating a regional association of EduYears-PGS and the independent prediction of SES on cognitive function and brain development. It suggests that the SES inequalities, in particular parental education, are related to global aspects of cortical development, and exert a persistent influence on brain development during adolescence.Significance statementThe influence of socioeconomic (SES) inequalities on brain and cognitive development is a hotly debated topic. However, previous studies have not considered that genetic factors overlap with SES. Here we showed, for the first time, that SES and EduYears-PGS (a score from thousands of genetic markers for educational attainment) have independent associations with both cognition and global cortical surface area in adolescents. EduYears-PGS also had a localized association in the brain: the intraparietal sulcus, a region related to non-verbal intelligence. In contrast, SES had global, but not regional, associations, and these persisted throughout adolescence. This suggests that the influence of SES inequalities is widespread – a result that opposes the current paradigm and can help inform policies in education.


2018 ◽  
Vol 29 (2) ◽  
pp. 827-837 ◽  
Author(s):  
Riccardo Cafiero ◽  
Jens Brauer ◽  
Alfred Anwander ◽  
Angela D Friederici

2017 ◽  
Author(s):  
Chintan M. Mehta ◽  
Jeffrey G. Malins ◽  
Kimberly G. Noble ◽  
Jeffrey R. Gruen

AbstractEarly adversity and socioeconomic disadvantage are risk factors associated with diminished cognitive outcomes during development. Recent studies also provide evidence that upbringings characterized by stressful experiences and markers of disadvantage during childhood, such as lower parental education or household income, are associated with variation in brain structure. Although disadvantage often confers adversity, these are distinct risk factors whose differential influences on neurodevelopment and neurocognitive outcomes are not well characterized. We examined pathways linking parental education, adverse experiences, brain structure, and cognitive performances through an analysis of 1,413 typically-developing youth, ages 8 through 21, in the Philadelphia Neurodevelopmental Cohort. Parental education and adverse experiences had unique associations with cortical surface area and subcortical volume as well as cognitive performance across several domains. Associations between parental education and several cognitive tasks were explained, in part, by variation in cortical surface area. In contrast, associations between adversity and cognitive tasks were explained primarily by variation in subcortical volume. A composite neurodevelopmental factor derived from principal component analysis of cortical thickness, cortical surface area, and subcortical volume mediated independent associations between both parental education and adverse experiences with reading, geometric reasoning, verbal reasoning, attention, and emotional differentiation tasks. Our analysis provides novel evidence that socioeconomic disadvantage and adversity influence neurodevelopmental pathways associated with cognitive outcomes through independent mechanisms.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Xiaoxu Na ◽  
Ting Li ◽  
Linda J. Larson-Prior ◽  
Caroline E. Baldwin ◽  
Thomas M. Badger ◽  
...  

Abstract Background While the importance of adequate sleep duration to normal brain development is well known, more studies are needed to characterize how undiagnosed sleep disturbance other than suboptimal sleep duration may impact brain development. In this study we aim to understand the relationships between sleep disturbance measures and cortical morphometry in typically-developing children without previous diagnoses of sleep pathology. Methods Healthy 8-year-old children (30 boys, 37 girls) without clinical diagnosis of sleep disorders were prospectively recruited for brain MRI and their parents completed the Children’s Sleep Habits Questionnaire (CSHQ). Total sleep disturbance score, as well as 8 subscales including bedtime resistance, sleep onset delay, sleep duration, sleep anxiety, night waking, parasomnias, sleep disordered breathing, and daytime sleepiness were calculated, and their relationships with cortical morphometry features including cortical gray matter volume, cortical thickness, and surface area were investigated, controlled for total cortical volume and sex. Results The CSHQ total sleep disturbance score significantly correlated with cortical surface area in a cluster in the left middle temporal gyrus (P < 0.001, R = -0.54). In addition, the bedtime resistance subscale negatively correlated with cortical surface area in a cluster in the right fusiform gyrus (P < 0.001, R = -0.50). No other clusters showed significant relationships between CSHQ total score or subscales and cortical features for this cohort. Conclusion Significant relationships between sleep disturbance scores in typically-developing children without clinical diagnosis of sleep pathology and their brain cortical surface area in two temporal lobe regions were identified, suggesting that undiagnosed sleep disturbance may potentially impact brain development even in healthy children.


2020 ◽  
Vol 10 (12) ◽  
pp. 950
Author(s):  
Golnoush Akhlaghipour ◽  
Shervin Assari

Background. Considerable research has linked social determinants of health (SDoHs) such as race, parental education, and household income to school performance, and these effects may be in part due to working memory. However, a growing literature shows that these effects may be complex: while the effects of parental education may be diminished for Blacks than Whites, household income may explain such effects. Purpose. Considering race as sociological rather than a biological construct (race as a proxy of racism) and built on Minorities’ Diminished Returns (MDRs), this study explored complexities of the effects of SDoHs on children’s working memory. Methods. We borrowed data from the Adolescent Brain Cognitive Development (ABCD) study. The total sample was 10,418, 9- and 10-year-old children. The independent variables were race, parental education, and household income. The primary outcome was working memory measured by the NIH Toolbox Card Sorting Test. Age, sex, ethnicity, and parental marital status were the covariates. To analyze the data, we used mixed-effect regression models. Results. High parental education and household income were associated with higher and Black race was associated with lower working memory. The association between high parental education but not household income was less pronounced for Black than White children. This differential effect of parental education on working memory was explained by household income. Conclusions. For American children, parental education generates unequal working memory, depending on race. This means parental education loses some of its expected effects for Black families. It also suggests that while White children with highly educated parents have the highest working memory, Black children report lower working memory, regardless of their parental education. This inequality is mainly because of differential income in highly educated White and Black families. This finding has significant public policy and economic implications and suggests we need to do far more than equalizing education to eliminate racial inequalities in children’s cognitive outcomes. While there is a need for multilevel policies that reduce the effect of racism and social stratification for middle-class Black families, equalizing income may have more returns than equalizing education.


Data in Brief ◽  
2015 ◽  
Vol 5 ◽  
pp. 929-938 ◽  
Author(s):  
Simon Ducharme ◽  
Matthew D. Albaugh ◽  
Tuong-Vi Nguyen ◽  
James J. Hudziak ◽  
J.M. Mateos-Pérez ◽  
...  

2022 ◽  
Vol 15 ◽  
Author(s):  
Yash Patel ◽  
Nadine Parker ◽  
Giovanni A. Salum ◽  
Zdenka Pausova ◽  
Tomáš Paus

General psychopathology and cognition are likely to have a bidirectional influence on each other. Yet, the relationship between brain structure, psychopathology, and cognition remains unclear. This brief report investigates the association between structural properties of the cerebral cortex [surface area, cortical thickness, intracortical myelination indexed by the T1w/T2w ratio, and neurite density assessed by restriction spectrum imaging (RSI)] with general psychopathology and cognition in a sample of children from the Adolescent Brain Cognitive Development (ABCD) study. Higher levels of psychopathology and lower levels of cognitive ability were associated with a smaller cortical surface area. Inter-regionally—across the cerebral cortex—the strength of association between an area and psychopathology is strongly correlated with the strength of association between an area and cognition. Taken together, structural deviations particularly observed in the cortical surface area influence both psychopathology and cognition.


Sign in / Sign up

Export Citation Format

Share Document