scholarly journals Comparison of Functional Connectivity in the Prefrontal Cortex during a Simple and an Emotional Go/No-Go Task in Female versus Male Groups: An fNIRS Study

2021 ◽  
Vol 11 (7) ◽  
pp. 909
Author(s):  
Thien Nguyen ◽  
Emma E. Condy ◽  
Soongho Park ◽  
Bruce H. Friedman ◽  
Amir Gandjbakhche

Inhibitory control is a cognitive process to suppress prepotent behavioral responses to stimuli. This study aimed to investigate prefrontal functional connectivity during a behavioral inhibition task and its correlation with the subject’s performance. Additionally, we identified connections that are specific to the Go/No-Go task. The experiment was performed on 42 normal, healthy adults who underwent a vanilla baseline and a simple and emotional Go/No-Go task. Cerebral hemodynamic responses were measured in the prefrontal cortex using a 16-channel near infrared spectroscopy (NIRS) device. Functional connectivity was calculated from NIRS signals and correlated to the Go/No-Go performance. Strong connectivity was found in both the tasks in the right hemisphere, inter-hemispherically, and the left medial prefrontal cortex. Better performance (fewer errors, faster response) is associated with stronger prefrontal connectivity during the simple Go/No-Go in both sexes and the emotional Go/No-Go connectivity in males. However, females express a lower emotional Go/No-Go connectivity while performing better on the task. This study reports a complete prefrontal network during a simple and emotional Go/No-Go and its correlation with the subject’s performance in females and males. The results can be applied to examine behavioral inhibitory control deficits in population with neurodevelopmental disorders.

2021 ◽  
Vol 15 ◽  
Author(s):  
Yan He ◽  
Yinying Hu ◽  
Yaxi Yang ◽  
Defeng Li ◽  
Yi Hu

Recent neuroimaging research has suggested that unequal cognitive efforts exist between interpreting from language 1 (L1) to language 2 (L2) compared with interpreting from L2 to L1. However, the neural substrates that underlie this directionality effect are not yet well understood. Whether directionality is modulated by interpreting expertise also remains unknown. In this study, we recruited two groups of Mandarin (L1)/English (L2) bilingual speakers with varying levels of interpreting expertise and asked them to perform interpreting and reading tasks. Functional near-infrared spectroscopy (fNIRS) was used to collect cortical brain data for participants during each task, using 68 channels that covered the prefrontal cortex and the bilateral perisylvian regions. The interpreting-related neuroimaging data was normalized by using both L1 and L2 reading tasks, to control the function of reading and vocalization respectively. Our findings revealed the directionality effect in both groups, with forward interpreting (from L1 to L2) produced more pronounced brain activity, when normalized for reading. We also found that directionality was modulated by interpreting expertise in both normalizations. For the group with relatively high expertise, the activated brain regions included the right Broca’s area and the left premotor and supplementary motor cortex; whereas for the group with relatively low expertise, the activated brain areas covered the superior temporal gyrus, the dorsolateral prefrontal cortex (DLPFC), the Broca’s area, and visual area 3 in the right hemisphere. These findings indicated that interpreting expertise modulated brain activation, possibly because of more developed cognitive skills associated with executive functions in experienced interpreters.


2020 ◽  
Author(s):  
Tianye Zhai ◽  
Betty Jo Salmeron ◽  
Hong Gu ◽  
Bryon Adinoff ◽  
Elliot A. Stein ◽  
...  

AbstractBackgroundRelapse is one of the most perplexing problems of addiction. The dorsolateral prefrontal cortex (DLPFC) is crucially involved in numerous cognitive and affective processes that are implicated in phenotypes of addiction, and is one of the most frequently reported brain regions with aberrant functionality in substance use disorders. However, the DLPFC is an anatomically large and functionally heterogeneous region, and the specific DLPFC-based circuits that contribute to drug relapse remain unknown.MethodsWe systematically investigated the relationship of cocaine relapse with 98 DLPFC functional circuits defined by evenly sampling the entire bilateral DLPFC in a cohort of cocaine dependent patients (n=43, 5F) following a psychosocial treatment intervention. A Cox regression model was utilized to predict relapse likelihood based on DLPFC functional connectivity strength.ResultsFunctional connectivity from 3 of the 98 DLPFC loci, one on the left and two on the right hemisphere, significantly predicted cocaine relapse with an accuracy of 83.9%, 84.7% and 85.4%, respectively. Combining all three significantly improved prediction validity to 87.5%. Protective and risk circuits related to these DLPFC loci were identified that are known to support “bottom up” drive to use drug and “top down” control over behavior together with social emotional, learning and memory processing.ConclusionThree DLPFC-centric circuits were identified that predict relapse to cocaine use with high accuracy. These functionally distinct DLPFC-based circuits provide insights into the multiple roles played by the DLPFC in cognitive and affective functioning that affects treatment outcome. The identified DLPFC loci may serve as potential neuromodulation targets for addiction treatment and as clinically relevant biomarkers of its efficacy.


2021 ◽  
Vol 11 (4) ◽  
pp. 483
Author(s):  
Tatsunori Watanabe ◽  
Nami Kubo ◽  
Xiaoxiao Chen ◽  
Keisuke Yunoki ◽  
Takuya Matsumoto ◽  
...  

The purpose of this pilot study was to investigate whether transcranial static magnetic field stimulation (tSMS), which can modulate cortical excitability, would influence inhibitory control function when applied over the dorsolateral prefrontal cortex (DLPFC). Young healthy adults (n = 8, mean age ± SD = 24.4 ± 4.1, six females) received the following stimulations for 30 min on different days: (1) tSMS over the left DLPFC, (2) tSMS over the right DLPFC, and (3) sham stimulation over either the left or right DLPFC. The participants performed a Go/NoGo task before, immediately after, and 10 min after the stimulation. They were instructed to extend the right wrist in response to target stimuli. We recorded the electromyogram from the right wrist extensor muscles and analyzed erroneous responses (false alarm and missed target detection) and reaction times. As a result, 50% of the participants made erroneous responses, and there were five erroneous responses in total (0.003%). A series of statistical analyses revealed that tSMS did not affect the reaction time. These preliminary findings suggest the possibility that tSMS over the DLPFC is incapable of modulating inhibitory control and/or that the cognitive load imposed in this study was insufficient to detect the effect.


1998 ◽  
Vol 353 (1377) ◽  
pp. 1819-1828 ◽  
Author(s):  
◽  
S. M. Courtney ◽  
L. Petit ◽  
J. V. Haxby ◽  
L. G. Ungerleider

Working memory enables us to hold in our ‘mind's eye’ the contents of our conscious awareness, even in the absence of sensory input, by maintaining an active representation of information for a brief period of time. In this review we consider the functional organization of the prefrontal cortex and its role in this cognitive process. First, we present evidence from brain–imaging studies that prefrontal cortex shows sustained activity during the delay period of visual working memory tasks, indicating that this cortex maintains on–line representations of stimuli after they are removed from view. We then present evidence for domain specificity within frontal cortex based on the type of information, with object working memory mediated by more ventral frontal regions and spatial working memory mediated by more dorsal frontal regions. We also propose that a second dimension for domain specificity within prefrontal cortex might exist for object working memory on the basis of the type of representation, with analytic representations maintained preferentially in the left hemisphere and image–based representations maintained preferentially in the right hemisphere. Furthermore, we discuss the possibility that there are prefrontal areas brought into play during the monitoring and manipulation of information in working memory in addition to those engaged during the maintenance of this information. Finally, we consider the relationship of prefrontal areas important for working memory, both to posterior visual processing areas and to prefrontal areas associated with long–term memory.


2015 ◽  
Vol 21 (4) ◽  
pp. 271-284 ◽  
Author(s):  
Hsiang-Yuan Lin ◽  
Wen-Yih Isaac Tseng ◽  
Meng-Chuan Lai ◽  
Kayako Matsuo ◽  
Susan Shur-Fen Gau

AbstractThe frontoparietal control network, anatomically and functionally interposed between the dorsal attention network and default mode network, underpins executive control functions. Individuals with attention-deficit/hyperactivity disorder (ADHD) commonly exhibit deficits in executive functions, which are mainly mediated by the frontoparietal control network. Involvement of the frontoparietal control network based on the anterior prefrontal cortex in neurobiological mechanisms of ADHD has yet to be tested. We used resting-state functional MRI and seed-based correlation analyses to investigate functional connectivity of the frontoparietal control network in a sample of 25 children with ADHD (7–14 years; mean 9.94±1.77 years; 20 males), and 25 age-, sex-, and performance IQ-matched typically developing (TD) children. All participants had limited in-scanner head motion. Spearman’s rank correlations were used to test the associations between altered patterns of functional connectivity with clinical symptoms and executive functions, measured by the Conners’ Continuous Performance Test and Spatial Span in the Cambridge Neuropsychological Test Automated Battery. Compared with TD children, children with ADHD demonstrated weaker connectivity between the right anterior prefrontal cortex (PFC) and the right ventrolateral PFC, and between the left anterior PFC and the right inferior parietal lobule. Furthermore, this aberrant connectivity of the frontoparietal control network in ADHD was associated with symptoms of impulsivity and opposition-defiance, as well as impaired response inhibition and attentional control. The findings support potential integration of the disconnection model and the executive dysfunction model for ADHD. Atypical frontoparietal control network may play a pivotal role in the pathophysiology of ADHD. (JINS, 2015, 21, 271–284)


2018 ◽  
Vol 26 (4) ◽  
pp. 222-228 ◽  
Author(s):  
Will Rizer ◽  
Jacob S Aday ◽  
Joshua M Carlson

The P300 event-related potential is an index of attentional resources related to target detection. Source localization and functional magnetic resonance imaging (fMRI) research has indicated that, among other regions, the prefrontal cortex contributes to the generation of the P300. Similar to fMRI, near infrared (NIR) spectroscopy measures change in blood oxygen levels, but offers several advantages including portability, low expense, and superior temporal resolution. No studies to date have examined the extent to which prefrontal cortex NIR spectroscopy measures are active during the P300 paradigm. To address this knowledge gap, participants completed a two-difficulty visual oddball task in which NIR spectroscopy and P300 data were collected in a counterbalanced order. Confirmatory results indicate that the P300 event-related potential is attenuated as a function of task difficulty. Similarly, NIR spectroscopy measures of oxygenated hemoglobin in the right medial prefrontal cortex are attenuated as a function of task difficulty. The results suggest that prefrontal cortex NIR spectroscopy measures are sensitive to task difficulty in a visual P300 oddball task.


2021 ◽  
Author(s):  
Abigail Fiske ◽  
Carina de Klerk ◽  
Katie Y. K. Lui ◽  
Liam H Collins-Jones ◽  
Alexandra Hendry ◽  
...  

Inhibitory control, a core executive function, emerges in infancy and develops rapidly across childhood. Methodological limitations have meant that studies investigating the neural correlates underlying inhibitory control in infancy are rare. Employing functional near-infrared spectroscopy alongside a novel touchscreen task that measures response inhibition, this study aimed to uncover the neural underpinnings of inhibitory control in 10-month-old infants (N = 135). We found that when inhibition is required, the right prefrontal and parietal cortices were more activated than when there is no inhibitory demand. Further, activation in right prefrontal areas was associated with individual differences in response inhibition performance. This demonstrates that inhibitory control in infants as young as 10 months of age is supported by similar brain areas as in older children and adults. With this study we have lowered the age-boundary for localising the neural substrates of response inhibition to the first year of life.


Author(s):  
Zhisong Zhang ◽  
Agnieszka Olszewska-Guizzo ◽  
Syeda Fabeha Husain ◽  
Jessica Bose ◽  
Jongkwan Choi ◽  
...  

Background: There is little understanding on how brief relaxation practice and viewing greenery images would affect brain responses during cognitive tasks. In the present study, we examined the variation in brain activation of the prefrontal cortex during arithmetic tasks before and after viewing greenery images, brief relaxation practice, and control task using functional near-infrared spectroscopy (fNIRS). Method: This randomized controlled study examined the activation patterns of the prefrontal cortex (PFC) in three groups of research participants who were exposed to viewing greenery images (n = 10), brief relaxation practice (n = 10), and control task (n = 11). The activation pattern of the PFC was measured pre- and post-intervention using a portable fNIRS device and reported as mean total oxygenated hemoglobin (HbO μm). Primary outcome of the study is the difference in HbO μm between post- and pre-intervention readings during a cognitive task that required the research participants to perform arithmetic calculation. Results: In terms of intervention-related differences, there was significant difference in average HbO μm when performing arithmetic tasks before and after brief relaxation practice (p < 0.05). There were significant increases in average HbO μm in the right frontopolar cortex (p = 0.029), the left frontopolar cortex (p = 0.01), and the left orbitofrontal cortex (p = 0.033) during arithmetic tasks after brief relaxation practice. In contrast, there were no significant differences in average HbO μm when performing arithmetic tasks before and after viewing greenery images (p > 0.05) and the control task (p > 0.05). Conclusion: Our preliminary findings show that brief relaxation practice but not viewing greenery images led to significant frontal lobe activation during arithmetic tasks. The present study demonstrated, for the first time, that there was an increase in activation in neuroanatomical areas including the combined effort of allocation of attentional resources, exploration, and memory performance after the brief relaxation practice. Our findings suggest the possibility that the right frontopolar cortex, the left frontopolar cortex, and the left orbitofrontal cortex may be specifically associated with the benefits of brief relaxation on the brain.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jun Matsuoka ◽  
Shinsuke Koike ◽  
Yoshihiro Satomura ◽  
Naohiro Okada ◽  
Yukika Nishimura ◽  
...  

Abstract Suicide is a major cause of death in patients with schizophrenia, particularly among those with recent disease onset. Although brain imaging studies have identified the neuroanatomical correlates of suicidal behavior, functional brain activity correlates particularly in patients with recent-onset schizophrenia (ROSZ) remain unknown. Using near-infrared spectroscopy (NIRS) recording with a high-density coverage of the prefrontal area, we investigated whether prefrontal activity is altered in patients with ROSZ having a history of suicide attempts. A 52-channel NIRS system was used to examine hemodynamic changes in patients with ROSZ that had a history of suicide attempts (n = 24) or that lacked such a history (n = 62), and age- and sex-matched healthy controls (n = 119), during a block-design letter fluency task (LFT). Patients with a history of suicide attempts exhibited decreased activation in the right dorsolateral prefrontal cortex compared with those without such a history. Our findings indicate that specific regions of the prefrontal cortex may be associated with suicidal attempts, which may have implications for early intervention for psychosis.


Sign in / Sign up

Export Citation Format

Share Document