scholarly journals Brief Relaxation Practice Induces Significantly More Prefrontal Cortex Activation during Arithmetic Tasks Comparing to Viewing Greenery Images as Revealed by Functional Near-Infrared Spectroscopy (fNIRS)

Author(s):  
Zhisong Zhang ◽  
Agnieszka Olszewska-Guizzo ◽  
Syeda Fabeha Husain ◽  
Jessica Bose ◽  
Jongkwan Choi ◽  
...  

Background: There is little understanding on how brief relaxation practice and viewing greenery images would affect brain responses during cognitive tasks. In the present study, we examined the variation in brain activation of the prefrontal cortex during arithmetic tasks before and after viewing greenery images, brief relaxation practice, and control task using functional near-infrared spectroscopy (fNIRS). Method: This randomized controlled study examined the activation patterns of the prefrontal cortex (PFC) in three groups of research participants who were exposed to viewing greenery images (n = 10), brief relaxation practice (n = 10), and control task (n = 11). The activation pattern of the PFC was measured pre- and post-intervention using a portable fNIRS device and reported as mean total oxygenated hemoglobin (HbO μm). Primary outcome of the study is the difference in HbO μm between post- and pre-intervention readings during a cognitive task that required the research participants to perform arithmetic calculation. Results: In terms of intervention-related differences, there was significant difference in average HbO μm when performing arithmetic tasks before and after brief relaxation practice (p < 0.05). There were significant increases in average HbO μm in the right frontopolar cortex (p = 0.029), the left frontopolar cortex (p = 0.01), and the left orbitofrontal cortex (p = 0.033) during arithmetic tasks after brief relaxation practice. In contrast, there were no significant differences in average HbO μm when performing arithmetic tasks before and after viewing greenery images (p > 0.05) and the control task (p > 0.05). Conclusion: Our preliminary findings show that brief relaxation practice but not viewing greenery images led to significant frontal lobe activation during arithmetic tasks. The present study demonstrated, for the first time, that there was an increase in activation in neuroanatomical areas including the combined effort of allocation of attentional resources, exploration, and memory performance after the brief relaxation practice. Our findings suggest the possibility that the right frontopolar cortex, the left frontopolar cortex, and the left orbitofrontal cortex may be specifically associated with the benefits of brief relaxation on the brain.

2021 ◽  
Vol 15 ◽  
Author(s):  
Yan He ◽  
Yinying Hu ◽  
Yaxi Yang ◽  
Defeng Li ◽  
Yi Hu

Recent neuroimaging research has suggested that unequal cognitive efforts exist between interpreting from language 1 (L1) to language 2 (L2) compared with interpreting from L2 to L1. However, the neural substrates that underlie this directionality effect are not yet well understood. Whether directionality is modulated by interpreting expertise also remains unknown. In this study, we recruited two groups of Mandarin (L1)/English (L2) bilingual speakers with varying levels of interpreting expertise and asked them to perform interpreting and reading tasks. Functional near-infrared spectroscopy (fNIRS) was used to collect cortical brain data for participants during each task, using 68 channels that covered the prefrontal cortex and the bilateral perisylvian regions. The interpreting-related neuroimaging data was normalized by using both L1 and L2 reading tasks, to control the function of reading and vocalization respectively. Our findings revealed the directionality effect in both groups, with forward interpreting (from L1 to L2) produced more pronounced brain activity, when normalized for reading. We also found that directionality was modulated by interpreting expertise in both normalizations. For the group with relatively high expertise, the activated brain regions included the right Broca’s area and the left premotor and supplementary motor cortex; whereas for the group with relatively low expertise, the activated brain areas covered the superior temporal gyrus, the dorsolateral prefrontal cortex (DLPFC), the Broca’s area, and visual area 3 in the right hemisphere. These findings indicated that interpreting expertise modulated brain activation, possibly because of more developed cognitive skills associated with executive functions in experienced interpreters.


2021 ◽  
Vol 4 (1) ◽  
pp. p8
Author(s):  
Michael Oler ◽  
Anthony Johnson ◽  
Anna McCulloh ◽  
Munqith Dagher ◽  
Anita Day ◽  
...  

Sectarian violence continues in Iraq affecting regional and world security. Neuroscience techniques are used to assess the mentalizing process and counter-arguing in response to videos designed to prevent extremist radicalization. Measurement of neural activity in brain Regions of Interest (ROI) assists identification of messages which can promote favorable behavior. Activation of the Medial Prefrontal Cortex (MPFC) is associated with message adoption and behavior change. Public Service Announcements (PSAs) have not been effective in reducing violence in Iraq. This study demonstrates that the four PSAs investigated in this study do not activate the MPFC. The RLPFC is a brain ROI associated with counter-arguing and message resistance. This study demonstrates that reduction in activity in the Right Lateral Prefrontal Cortex (RLPFC) is associated with decreased sectarianism. Engagement was measured and is associated with activity in the frontal pole regions.We introduce Functional Near-infrared Spectroscopy (fNIRS) to measure the neural activity of highly sectarian Iraqis in response to these anti-sectarian messages. Neural activity was measured while viewing three PSAs and a fourth unpublished video. All four videos are intended to reduce sectarianism. A novel sectarianism scale is introduced to measure sectarian beliefs before and after the messages. This sectarian scale has high internal consistency as measured by Cronbach’s alpha. Measured activation of brain ROIs are correlated with changes in the sectarian scale. Twelve Sunni and twelve Shi’a Iraqis participated in the study. Subjects were shown the four videos in randomized order, while equipped with a fNIRS neural imaging device. All four videos produced significant engagement. None of the videos reduced sectarianism nor caused brain activation of adoption. This is consistent with the widely held Iraqi public perception that the PSAs are ineffective. Only one video, which was un-published, caused reduced sectarian beliefs. This un-published fourth video was associated with decreased counter-arguing. Counter-arguing is associated with message resistance.


2020 ◽  
Vol 15 (1) ◽  
pp. 97-109 ◽  
Author(s):  
Lifen Zheng ◽  
Wenda Liu ◽  
Yuhang Long ◽  
Yu Zhai ◽  
Hui Zhao ◽  
...  

Abstract Human beings organise socially. Theories have posited that interpersonal neural synchronisation might underlie the creation of affiliative bonds. Previous studies tested this hypothesis mainly during a social interaction, making it difficult to determine whether the identified synchronisation is associated with affiliative bonding or with social interaction. This study addressed this issue by focusing on the teacher–student relationship in the resting state both before and after a teaching period. Brain activity was simultaneously measured in both individuals using functional near-infrared spectroscopy. The results showed a significant increase in brain synchronisation at the right sensorimotor cortex between the teacher and student in the resting state after, but not before, the teaching period. Moreover, the synchronisation increased only after a turn-taking mode of teaching but not after a lecturing or video mode of teaching. A chain mediation analysis showed that brain synchronisation during teaching partially mediated the relationship between the brain synchronisation increase in the resting state and strength of the affiliative bond. Finally, both role assignment and social interaction were found to be required for affiliative bonding. Together, these results support the hypothesis that interpersonal synchronisation in brain activity underlies affiliative bonding and that social interaction mechanically mediates the bonding process.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Kaori Shimoda ◽  
Yoshiya Moriguchi ◽  
Kenji Tsuchiya ◽  
Shiori Katsuyama ◽  
Fusae Tozato

Individuals have a preferred pace at which they perform voluntary repetitive movements. Previous studies have reported that greater activation of the prefrontal cortex was observed during self-initiated movements than during externally triggered movements. The purpose of the present study is to compare the activation of the prefrontal cortex induced when the subjects performed a peg-board task at their preferred slow pace (PSP, the self-initiated condition) with that induced when they performed the same task at metronome slow pace (MSP, the externally triggered condition) using functional near-infrared spectroscopy. Healthy subjects performed the task while sitting in a chair. By assessing the activated channels individually, we confirmed that all of the prefrontal regions of interest were activated by both tasks. In the second-level analyses, we found that the activation detected in the frontopolar cortex (FPPFC; Brodmann area 10) was higher during the PSP task than during the MSP task. The FPPFC is known to be at the top of prefrontal hierarchy, and specifically involved in evaluating self-generated information. In addition, the FPPFC plays a role in coordinating lateral prefrontal cortex. In the present study, the subjects evaluated and managed the internally generated PSP by coordinating the activity of other lower level prefrontal regions.


Author(s):  
Rikuto Yamashita ◽  
Chong Chen ◽  
Toshio Matsubara ◽  
Kosuke Hagiwara ◽  
Masato Inamura ◽  
...  

It has been recently suggested that contact with nature improves mood via reducing the activity of the prefrontal cortex. However, the specific regions within the prefrontal cortex that underlie this effect remain unclear. In this study, we aimed to identify the specific regions involved in the mood-improving effect of viewing images of nature using a 52-channel functional near-infrared spectroscopy (fNIRS). Specifically, we focused on the orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (dlPFC), two regions associated with affective processing and control. In a randomized controlled crossover experiment, we assigned thirty young adults to view images of nature and built environments for three minutes each in a counterbalanced order. During image viewing, participants wore a fNIRS probe cap and had their oxyhemoglobin (oxy-Hb) measured. Immediately following each image viewing, participants indicated their mood in terms of comfortableness, relaxation, and vigor. Results showed that viewing images of nature significantly increased comfortableness and relaxation but not vigor compared to viewing images of built environments, with a large effect size. Meanwhile, the concentration of oxy-Hb in only the right OFC and none of the other regions significantly decreased while viewing the images of nature compared to built environments, with a medium effect size. We speculate that viewing images of nature improves mood by reducing the activity of or calming the OFC. Since the OFC is hyperactive in patients with depression and anxiety at rest, contact with nature might have therapeutic effects for them.


Healthcare ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1250
Author(s):  
Kohei Maruya ◽  
Tomoyuki Arai ◽  
Hiroaki Fujita

We aimed to detect brain abnormalities during cognitive and motor tasks in older individuals with pre-frailty, as this could prevent dementia. Sixty elderly participants (mean age: 76.3 years; 27 healthy and 33 with pre-frailty) were included, and their motor function, cognitive function, and dual-task abilities (gait with calculation and while carrying a ball) were evaluated. Total hemoglobin (t-Hb) was measured using functional near-infrared spectroscopy (fNIRS) during tasks and resting periods. The pre-frailty group had a slightly lower gait speed than the healthy group, but there was no significant difference in cognitive function. In the pre-frailty group, the t-Hb values during the normal gait and cognitive tasks were higher than the resting value in the right prefrontal cortex, while in the healthy group, only the word frequency task (WFT) was higher. Furthermore, in the WFT, the t-Hb values were significantly lower in the pre-frailty group than in the healthy group. The results showed that pre-frail subjects had lower brain activation during the WFT in the right prefrontal cortex and excessive activity during walking, even without a noticeable cognitive decline. The differences in cerebral blood flow under the pre-frailty conditions may be a clue to detecting cognitive decline earlier.


2021 ◽  
Vol 35 (3) ◽  
pp. 195-211
Author(s):  
Julie Petersen ◽  
Clarissa W. Ong ◽  
Allison S. Hancock ◽  
Ronald B. Gillam ◽  
Michael E. Levin ◽  
...  

Clinical perfectionism is the rigid pursuit of high standards, interfering with functioning. Little research has explored neural patterns in clinical perfectionism. The present study explores neural correlates of clinical perfectionism, before and after receiving ten 50-minute, weekly sessions of acceptance and commitment therapy (ACT), as compared to low-perfectionist controls, in specific cortical structures: the dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (MPFC), right inferior parietal lobule (IPL). Participants in the perfectionist condition (n = 43) were from a randomized controlled trial evaluating ACT for clinical perfectionism and low-perfectionist controls were undergraduate students (n = 12). Participants completed three tasks (editing a passage, mirror image tracing, circle tracing) using functional near-infrared spectroscopy (fNIRS) to measure neural activation. Results indicate that ḥin the DLPFC and MPFC of the perfectionists whereas activation in the other tasks were relatively similar. There were no differences were observed in the right DLPFC, MPFC, and right IPL between the posttreatment perfectionist and nonperfectionist control groups. Our findings suggest an unclear relationship between neural activation and perfectionism.


2019 ◽  
Author(s):  
Takayuki Nakahachi ◽  
Ryouhei Ishii ◽  
Leonides Canuet ◽  
Iori Sato ◽  
Kiyoko Kamibeppu ◽  
...  

Abstract Background: Tetris has recently expanded its place of activity not only to the original entertainment but also to clinical applications such as prevention of trauma flashback. However, to our knowledge, no studies focused on the cortical activation patterns themselves when playing Tetris in a natural form. This study aimed to investigate the activation patterns in the frontal cortex during naturally-performed Tetris for 90 seconds in 24 healthy subjects using functional near-infrared spectroscopy robust to artifacts by motion and electric devices. We also calculated the correlations of behavioral data with cortical activations, and compared the differences in activations between the high and low performers of Tetris. Results: The results demonstrated that significant activations in the frontal cortex during Tetris play had two factors, each showing a similar activation pattern. One of the factors was distributed over the lateral prefrontal cortex bilaterally, and the other was localized to the right prefrontal cortex. Moreover, in the high performers, the activations of the areas centered on the right dorsolateral prefrontal cortex (DLPFC) were estimated to increase and correlations of the activations between those areas and the other areas decrease compared with the low performers. Conclusions: It is suggested that high Tetris performers might reduce functional connectivity between activations of the areas centered on the right DLPFC and the other areas, and increase the local activations compared with low performers. It would be necessary to consider whether its visuospatial cognitive loads stimulate the appropriate areas of the subject’s brain to effectively utilize Tetris play for clinical interventions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christoph F. Geissler ◽  
Christian Frings ◽  
Birte Moeller

AbstractExecution of two independent actions in quick succession results in transient binding of these two actions. Subsequent repetition of any of these actions automatically retrieves the other. This process is probably fundamental for developing complex action sequences. However, rigid bindings between two actions are not always adaptive. Sometimes, it is necessary to repeat only one of the two previously executed actions. In such situations, stored action sequences must be disassembled, for the sake of flexibility. Exact mechanisms that allow for such an active unbinding of actions remain largely unknown, but it stands to reason, that some form of prefrontal executive control is necessary. Building on prior neuronal research that explored other forms of binding (e.g. between distractors and responses and abstract representations and responses), we explored middle and superior frontal correlates of -response binding in a sequential classification task with functional near-infrared spectroscopy. We found that anterior dorsolateral prefrontal cortex activity varied as a function of response–repetition condition. Activity in the right anterior dorsolateral prefrontal cortex correlated with changes in reaction times due to response–response binding. Our results indicate that the right anterior dorsolateral prefrontal cortex dismantles bindings between consecutive actions, whenever such bindings interfere with current action goals.


Sign in / Sign up

Export Citation Format

Share Document