scholarly journals Prefrontal dysfunction associated with a history of suicide attempts among patients with recent onset schizophrenia

2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Jun Matsuoka ◽  
Shinsuke Koike ◽  
Yoshihiro Satomura ◽  
Naohiro Okada ◽  
Yukika Nishimura ◽  
...  

Abstract Suicide is a major cause of death in patients with schizophrenia, particularly among those with recent disease onset. Although brain imaging studies have identified the neuroanatomical correlates of suicidal behavior, functional brain activity correlates particularly in patients with recent-onset schizophrenia (ROSZ) remain unknown. Using near-infrared spectroscopy (NIRS) recording with a high-density coverage of the prefrontal area, we investigated whether prefrontal activity is altered in patients with ROSZ having a history of suicide attempts. A 52-channel NIRS system was used to examine hemodynamic changes in patients with ROSZ that had a history of suicide attempts (n = 24) or that lacked such a history (n = 62), and age- and sex-matched healthy controls (n = 119), during a block-design letter fluency task (LFT). Patients with a history of suicide attempts exhibited decreased activation in the right dorsolateral prefrontal cortex compared with those without such a history. Our findings indicate that specific regions of the prefrontal cortex may be associated with suicidal attempts, which may have implications for early intervention for psychosis.

2021 ◽  
Vol 15 ◽  
Author(s):  
Yan He ◽  
Yinying Hu ◽  
Yaxi Yang ◽  
Defeng Li ◽  
Yi Hu

Recent neuroimaging research has suggested that unequal cognitive efforts exist between interpreting from language 1 (L1) to language 2 (L2) compared with interpreting from L2 to L1. However, the neural substrates that underlie this directionality effect are not yet well understood. Whether directionality is modulated by interpreting expertise also remains unknown. In this study, we recruited two groups of Mandarin (L1)/English (L2) bilingual speakers with varying levels of interpreting expertise and asked them to perform interpreting and reading tasks. Functional near-infrared spectroscopy (fNIRS) was used to collect cortical brain data for participants during each task, using 68 channels that covered the prefrontal cortex and the bilateral perisylvian regions. The interpreting-related neuroimaging data was normalized by using both L1 and L2 reading tasks, to control the function of reading and vocalization respectively. Our findings revealed the directionality effect in both groups, with forward interpreting (from L1 to L2) produced more pronounced brain activity, when normalized for reading. We also found that directionality was modulated by interpreting expertise in both normalizations. For the group with relatively high expertise, the activated brain regions included the right Broca’s area and the left premotor and supplementary motor cortex; whereas for the group with relatively low expertise, the activated brain areas covered the superior temporal gyrus, the dorsolateral prefrontal cortex (DLPFC), the Broca’s area, and visual area 3 in the right hemisphere. These findings indicated that interpreting expertise modulated brain activation, possibly because of more developed cognitive skills associated with executive functions in experienced interpreters.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Atsumichi Tachibana ◽  
J. Adam Noah ◽  
Yumie Ono ◽  
Daisuke Taguchi ◽  
Shuichi Ueda

Abstract Understanding how the brain modulates improvisation has been the focus of numerous studies in recent years. Models have suggested regulation of activity between default mode and executive control networks play a role in improvisational execution. Several studies comparing formulaic to improvised sequences support this framework and document increases in activity in medial frontal lobe with decreased activity in the dorsolateral prefrontal cortex (DLPFC). These patterns can be influenced through training and neural responses may differ between in beginner and expert musicians. Our goal was to test the generalizability of this framework and determine similarity in neural activity in the prefrontal cortex during improvisation. Twenty guitarists performed improvised and formulaic sequences in a blues rock format while brain activity was recorded using functional near-infrared spectroscopy. Results indicate similar modulation in DLPFC as seen previously. Specific decreases of activity from left DLPFC in the end compared to beginning or middle of improvised sequences were also found. Despite the range of skills of participants, we also found significant correlation between subjective feelings of improvisational performance and modulation in left DLPFC. Processing of subjective feelings regardless of skill may contribute to neural modulation and may be a factor in understanding neural activity during improvisation.


Author(s):  
Rikuto Yamashita ◽  
Chong Chen ◽  
Toshio Matsubara ◽  
Kosuke Hagiwara ◽  
Masato Inamura ◽  
...  

It has been recently suggested that contact with nature improves mood via reducing the activity of the prefrontal cortex. However, the specific regions within the prefrontal cortex that underlie this effect remain unclear. In this study, we aimed to identify the specific regions involved in the mood-improving effect of viewing images of nature using a 52-channel functional near-infrared spectroscopy (fNIRS). Specifically, we focused on the orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (dlPFC), two regions associated with affective processing and control. In a randomized controlled crossover experiment, we assigned thirty young adults to view images of nature and built environments for three minutes each in a counterbalanced order. During image viewing, participants wore a fNIRS probe cap and had their oxyhemoglobin (oxy-Hb) measured. Immediately following each image viewing, participants indicated their mood in terms of comfortableness, relaxation, and vigor. Results showed that viewing images of nature significantly increased comfortableness and relaxation but not vigor compared to viewing images of built environments, with a large effect size. Meanwhile, the concentration of oxy-Hb in only the right OFC and none of the other regions significantly decreased while viewing the images of nature compared to built environments, with a medium effect size. We speculate that viewing images of nature improves mood by reducing the activity of or calming the OFC. Since the OFC is hyperactive in patients with depression and anxiety at rest, contact with nature might have therapeutic effects for them.


Author(s):  
Nozomi Tomita ◽  
Hiroaki Kumano

AbstractSelf-focused attention (SFA) and other-focused attention (OFA) are central maintenance factors of social anxiety. Tomita et al., Cognitive Therapy and Research 44:511–525, 2020 investigated brain activities when manipulating SFA and OFA during speech tasks, after controlling for social anxiety, using near-infrared spectroscopy (NIRS) and eye-tracking. Compared with the control condition, the SFA condition demonstrated greater activity in the right frontopolar area (rFPA) and right dorsolateral prefrontal cortex. In the OFA condition, relative to controls, activity was greater in the left superior temporal gyrus. We investigated whether the activity in these brain areas increased in healthy individuals in proportion to their social anxiety tendency without manipulating SFA and OFA. Thirty-nine participants performed speech tasks under a no attentional manipulation (no-instruction) condition and a control (looking at various places) condition. Brain activity was measured using NIRS (oxy-Hb responses), and eye movements were tracked. We found that higher social anxiety was associated with higher rFPA activity in the no-instruction condition compared to the control condition and that higher subjective SFA during the no-instruction condition with higher social anxiety was associated with increased rFPA between the no-instruction and control conditions. These results suggest that greater activity in the rFPA is a useful objective measure of SFA related to social anxiety during speech tasks.


2021 ◽  
Vol 35 (3) ◽  
pp. 195-211
Author(s):  
Julie Petersen ◽  
Clarissa W. Ong ◽  
Allison S. Hancock ◽  
Ronald B. Gillam ◽  
Michael E. Levin ◽  
...  

Clinical perfectionism is the rigid pursuit of high standards, interfering with functioning. Little research has explored neural patterns in clinical perfectionism. The present study explores neural correlates of clinical perfectionism, before and after receiving ten 50-minute, weekly sessions of acceptance and commitment therapy (ACT), as compared to low-perfectionist controls, in specific cortical structures: the dorsolateral prefrontal cortex (DLPFC), medial prefrontal cortex (MPFC), right inferior parietal lobule (IPL). Participants in the perfectionist condition (n = 43) were from a randomized controlled trial evaluating ACT for clinical perfectionism and low-perfectionist controls were undergraduate students (n = 12). Participants completed three tasks (editing a passage, mirror image tracing, circle tracing) using functional near-infrared spectroscopy (fNIRS) to measure neural activation. Results indicate that ḥin the DLPFC and MPFC of the perfectionists whereas activation in the other tasks were relatively similar. There were no differences were observed in the right DLPFC, MPFC, and right IPL between the posttreatment perfectionist and nonperfectionist control groups. Our findings suggest an unclear relationship between neural activation and perfectionism.


Author(s):  
Yusuke Asaka ◽  
Keiichi Watanuki ◽  
Shuichi Fukuda ◽  
Keiichi Muramatsu ◽  
Lei Hou

Here, we investigate and discuss the effect of accuracy of imitation for improvement of skills on brain activity. In order to improve the skills, learners combine and accumulate information of the skills through practice. Thus, we used near-infrared spectroscopy (NIRS) to investigate brain activity during the process of improvement. Evaluation of the level of knowledge acquisition with monitoring of brain activity can be an indicator of the learner’s degree of skill progression. Therefore, our final goal is constructing a new learning model based on brain activity monitoring and improving learning efficiency. We experimented on the assembly operation by imitation learning that assumed work in the manufacturing industries from a previous example. As a result, we showed the possibility of brain activity shift with improvement of the skill. In this article, we targeted task accuracy and investigated whether the brain activity shift is caused by a progress in the task accuracy, act of practice, or some other factor. As a result, we showed a possibility that the trend shift in the right and left dorsolateral prefrontal area and frontal pole was not caused by the simple task accuracy improvement but by the action of practice, which helped subjects store the information.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Yumie Ono ◽  
Goh Kobayashi ◽  
Rika Hayama ◽  
Ryuhei Ikuta ◽  
Minoru Onozouka ◽  
...  

We used functional near-infrared spectroscopy to measure prefrontal brain activity accompanying the physical sensation of oral discomfort that arose when healthy young-adult volunteers performed a grinding motion with mild occlusal elevation (96 μm). We simultaneously evaluated various forms of occlusal discomfort using the visual analogue scale (VAS) and hemodynamic responses to identify the specific prefrontal activity that occurs with increased occlusal discomfort. The Oxy-Hb responses of selected channels in the bilateral frontopolar and dorsolateral prefrontal cortices increased in participants who reported increased severity of occlusal discomfort, while they decreased in those who reported no change or decreased occlusal discomfort during grinding. Moreover, the cumulative values of Oxy-Hb response in some of these channels were statistically significant predictive factors for the VAS scores. A generalized linear model analysis of Oxy-Hb signals in a group of participants who reported increased discomfort further indicated significant cerebral activation in the right frontopolar and dorsolateral prefrontal cortices that overlapped with the results of correlation analyses. Our results suggest that the increased hemodynamic responses in the prefrontal area reflect the top-down control of attention and/or self-regulation against the uncomfortable somatosensory input, which could be a possible marker to detect the subjective sense of occlusal discomfort.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christoph F. Geissler ◽  
Christian Frings ◽  
Birte Moeller

AbstractExecution of two independent actions in quick succession results in transient binding of these two actions. Subsequent repetition of any of these actions automatically retrieves the other. This process is probably fundamental for developing complex action sequences. However, rigid bindings between two actions are not always adaptive. Sometimes, it is necessary to repeat only one of the two previously executed actions. In such situations, stored action sequences must be disassembled, for the sake of flexibility. Exact mechanisms that allow for such an active unbinding of actions remain largely unknown, but it stands to reason, that some form of prefrontal executive control is necessary. Building on prior neuronal research that explored other forms of binding (e.g. between distractors and responses and abstract representations and responses), we explored middle and superior frontal correlates of -response binding in a sequential classification task with functional near-infrared spectroscopy. We found that anterior dorsolateral prefrontal cortex activity varied as a function of response–repetition condition. Activity in the right anterior dorsolateral prefrontal cortex correlated with changes in reaction times due to response–response binding. Our results indicate that the right anterior dorsolateral prefrontal cortex dismantles bindings between consecutive actions, whenever such bindings interfere with current action goals.


2021 ◽  
Vol 15 ◽  
Author(s):  
Xiaowei Jiang ◽  
Chenghao Zhou ◽  
Na Ao ◽  
Wenke Gu ◽  
Jingyi Li ◽  
...  

Resource scarcity imposes challenging demands on the human cognitive system. Insufficient resources cause the scarcity mindset to affect cognitive performance, while reward enhances cognitive function. Here, we examined how reward and scarcity simultaneously contribute to cognitive performance. Experimental manipulation to induce a polar scarcity mindset and reward conditions within participants under functional near-infrared spectroscopy (fNIRS) recording was implemented to explore the mechanism underlying the scarcity mindset and reward in terms of behavior and neurocognition. Participants showed decreased functional connectivity from the dorsolateral prefrontal cortex (DLPFC) to the ventrolateral prefrontal cortex (VLPFC) with a scarcity mindset, a region often implicated in cognitive control. Moreover, under reward conditions, the brain activation of the maximum total Hb bold signal was mainly located in the left hemisphere [channels 1, 3, and 4, left ventrolateral prefrontal cortex (L-VLPFC) and channel 6, left dorsolateral prefrontal cortex (L-DLPFC)], and there was also significant brain activation of the right dorsolateral prefrontal cortex (R-DLPFC) in the right hemisphere (channel 17). Furthermore, these data indicate the underlying neural changes of the scarcity mentality and demonstrate that brain activities may underlie reward processing. Additionally, the base-tree machine learning model was trained to detect the mechanism of reward function in the prefrontal cortex (PFC). According to SHapley Additive exPlanations (SHAP), channel 8 contributed the most important effect, as well as demonstrating a high-level interrelationship with other channels.


2021 ◽  
Vol 226 (4) ◽  
pp. 1169-1183
Author(s):  
Sebastian M. Max ◽  
Philipp A. Schroeder ◽  
Jens Blechert ◽  
Katrin E. Giel ◽  
Ann-Christine Ehlis ◽  
...  

AbstractIn our world with nearly omnipresent availability of attractive and palatable high-calorie food, the struggle against overweight and obesity is a major individual and public health challenge. Preference for unhealthy food and eating-related habits have a strong influence on health, suggesting that high-calorie food triggers fast and near-automatic reaching and grasping movements. Therefore, it is important to better understand the specific neural mechanisms that control the handling of food involving a coordinated interplay between sensoric, motoric, and cognitive subsystems. To this end, 30 healthy participants (Ø BMI: 22.86 kg/m2; BMI range: 19–30 kg/m2; 23 females) were instructed to collect one of two concurrently presented objects (food vs. office tools) by manual movement in virtual reality (VR) and on a touchscreen. Parallel to the task in VR, regional brain activity was measured by functional near-infrared spectroscopy (fNIRS). In the VR and on the touchscreen, stimulus recognition and selection were faster for food than for office tools. Yet, food was collected more slowly than office tools when measured in VR. On the background of increased brain activity in the right dorsolateral prefrontal cortex (dlPFC) during food trials, this suggests more behavioural control activity during handling foods. In sum, this study emphasizes the role of the right dlPFC in faster recognition and selection of food as part of a food-valuation network, more controlled handling of food in the VR which highlights the relevance of medium for modelling food-specific embodied cognitions.


Sign in / Sign up

Export Citation Format

Share Document