scholarly journals Disrupted Functional Rich-Club Organization of the Brain Networks in Children with Attention-Deficit/Hyperactivity Disorder, a Resting-State EEG Study

2021 ◽  
Vol 11 (7) ◽  
pp. 938
Author(s):  
Maliheh Ahmadi ◽  
Kamran Kazemi ◽  
Katarzyna Kuc ◽  
Anita Cybulska-Klosowicz ◽  
Mohammad Sadegh Helfroush ◽  
...  

Growing evidence indicates that disruptions in the brain’s functional connectivity play an important role in the pathophysiology of ADHD. The present study investigates alterations in resting-state EEG source connectivity and rich-club organization in children with inattentive (ADHDI) and combined (ADHDC) ADHD compared with typically developing children (TD) under the eyes-closed condition. EEG source analysis was performed by eLORETA in different frequency bands. The lagged phase synchronization (LPS) and graph theoretical metrics were then used to examine group differences in the topological properties and rich-club organization of functional networks. Compared with the TD children, the ADHDI children were characterized by a widespread significant decrease in delta and beta LPS, as well as increased theta and alpha LPS in the left frontal and right occipital regions. The ADHDC children displayed significant increases in LPS in the central, temporal and posterior areas. Both ADHD groups showed small-worldness properties with significant increases and decreases in the network degree in the θ and β bands, respectively. Both subtypes also displayed reduced levels of network segregation. Group differences in rich-club distribution were found in the central and posterior areas. Our findings suggest that resting-state EEG source connectivity analysis can better characterize alterations in the rich-club organization of functional brain networks in ADHD patients.

2020 ◽  
Author(s):  
Jared A. Rowland ◽  
Jennifer R. Stapleton-Kotloski ◽  
Greg E. Alberto ◽  
April T. Davenport ◽  
Phillip M. Epperly ◽  
...  

AbstractA fundamental question for alcohol use disorder is how naïve brain networks are reorganized in response to the consumption of alcohol. The current study aimed to determine the progression of alcohol’s effect on functional brain networks during the transition from naïve, to early, to chronic consumption. Resting-state brain networks of six female monkeys were acquired using magnetoencephalography prior to alcohol exposure, after early exposure, and after free-access to alcohol using a well-established model of chronic heavy alcohol use. Functional brain network metrics were derived at each time point. Assortativity, average connection frequency, and number of gamma connections changed significantly over time. All metrics remained relatively stable from naïve to early drinking, and displayed significant changes following increased quantity of alcohol consumption. The assortativity coefficient was significantly less negative (p=.043), connection frequency increased (p=.03), and gamma connections increased (p=.034). Further, brain regions considered hubs (p=.037) and members of the Rich Club (p=.012) became less common across animals following the introduction of alcohol. The minimum degree of the Rich Club prior to alcohol exposure was significantly predictive of future free-access drinking (r=-.88, p<.001). Results suggest naïve brain network characteristics may be used to predict future alcohol consumption, and that alcohol consumption alters the topology of functional brain networks, shifting hubs and Rich Club membership away from previous regions in a non-systematic manner. Further work to refine these relationships may lead to the identification of a high-risk AUD phenotype.


2016 ◽  
Vol 22 (2) ◽  
pp. 240-249 ◽  
Author(s):  
Ronald A. Yeo ◽  
Sephira G. Ryman ◽  
Martijn P. van den Heuvel ◽  
Marcel A. de Reus ◽  
Rex E. Jung ◽  
...  

AbstractObjectives: One of the most prominent features of schizophrenia is relatively lower general cognitive ability (GCA). An emerging approach to understanding the roots of variation in GCA relies on network properties of the brain. In this multi-center study, we determined global characteristics of brain networks using graph theory and related these to GCA in healthy controls and individuals with schizophrenia. Methods: Participants (N=116 controls, 80 patients with schizophrenia) were recruited from four sites. GCA was represented by the first principal component of a large battery of neurocognitive tests. Graph metrics were derived from diffusion-weighted imaging. Results: The global metrics of longer characteristic path length and reduced overall connectivity predicted lower GCA across groups, and group differences were noted for both variables. Measures of clustering, efficiency, and modularity did not differ across groups or predict GCA. Follow-up analyses investigated three topological types of connectivity—connections among high degree “rich club” nodes, “feeder” connections to these rich club nodes, and “local” connections not involving the rich club. Rich club and local connectivity predicted performance across groups. In a subsample (N=101 controls, 56 patients), a genetic measure reflecting mutation load, based on rare copy number deletions, was associated with longer characteristic path length. Conclusions: Results highlight the importance of characteristic path lengths and rich club connectivity for GCA and provide no evidence for group differences in the relationships between graph metrics and GCA. (JINS, 2016, 22, 240–249)


2021 ◽  
Vol 15 ◽  
Author(s):  
Jared A. Rowland ◽  
Jennifer R. Stapleton-Kotloski ◽  
Greg E. Alberto ◽  
April T. Davenport ◽  
Phillip M. Epperly ◽  
...  

Purpose: A fundamental question for Alcohol use disorder (AUD) is how and when naïve brain networks are reorganized in response to alcohol consumption. The current study aimed to determine the progression of alcohol’s effect on functional brain networks during transition from the naïve state to chronic consumption.Procedures: Resting-state brain networks of six female rhesus macaque (Macaca mulatta) monkeys were acquired using magnetoencephalography (MEG) prior to alcohol exposure and after free-access to alcohol using a well-established model of chronic heavy alcohol consumption. Functional brain network metrics were derived at each time point.Results: The average connection frequency (p &lt; 0.024) and membership of the Rich Club (p &lt; 0.022) changed significantly over time. Metrics describing network topology remained relatively stable from baseline to free-access drinking. The minimum degree of the Rich Club prior to alcohol exposure was significantly predictive of future free-access drinking (r = −0.88, p &lt; 0.001).Conclusions: Results suggest naïve brain network characteristics may be used to predict future alcohol consumption, and that alcohol consumption alters functional brain networks, shifting hubs and Rich Club membership away from previous regions in a non-systematic manner. Further work to refine these relationships may lead to the identification of a high-risk drinking phenotype.


2021 ◽  
Vol 11 (1) ◽  
pp. 118
Author(s):  
Blake R. Neyland ◽  
Christina E. Hugenschmidt ◽  
Robert G. Lyday ◽  
Jonathan H. Burdette ◽  
Laura D. Baker ◽  
...  

Elucidating the neural correlates of mobility is critical given the increasing population of older adults and age-associated mobility disability. In the current study, we applied graph theory to cross-sectional data to characterize functional brain networks generated from functional magnetic resonance imaging data both at rest and during a motor imagery (MI) task. Our MI task is derived from the Mobility Assessment Tool–short form (MAT-sf), which predicts performance on a 400 m walk, and the Short Physical Performance Battery (SPPB). Participants (n = 157) were from the Brain Networks and Mobility (B-NET) Study (mean age = 76.1 ± 4.3; % female = 55.4; % African American = 8.3; mean years of education = 15.7 ± 2.5). We used community structure analyses to partition functional brain networks into communities, or subnetworks, of highly interconnected regions. Global brain network community structure decreased during the MI task when compared to the resting state. We also examined the community structure of the default mode network (DMN), sensorimotor network (SMN), and the dorsal attention network (DAN) across the study population. The DMN and SMN exhibited a task-driven decline in consistency across the group when comparing the MI task to the resting state. The DAN, however, displayed an increase in consistency during the MI task. To our knowledge, this is the first study to use graph theory and network community structure to characterize the effects of a MI task, such as the MAT-sf, on overall brain network organization in older adults.


2019 ◽  
Author(s):  
Aya Kabbara ◽  
Veronique Paban ◽  
Arnaud Weill ◽  
Julien Modolo ◽  
Mahmoud Hassan

AbstractIntroductionIdentifying the neural substrates underlying the personality traits is a topic of great interest. On the other hand, it is now established that the brain is a dynamic networked system which can be studied using functional connectivity techniques. However, much of the current understanding of personality-related differences in functional connectivity has been obtained through the stationary analysis, which does not capture the complex dynamical properties of brain networks.ObjectiveIn this study, we aimed to evaluate the feasibility of using dynamic network measures to predict personality traits.MethodUsing the EEG/MEG source connectivity method combined with a sliding window approach, dynamic functional brain networks were reconstructed from two datasets: 1) Resting state EEG data acquired from 56 subjects. 2) Resting state MEG data provided from the Human Connectome Project. Then, several dynamic functional connectivity metrics were evaluated.ResultsSimilar observations were obtained by the two modalities (EEG and MEG) according to the neuroticism, which showed a negative correlation with the dynamic variability of resting state brain networks. In particular, a significant relationship between this personality trait and the dynamic variability of the temporal lobe regions was observed. Results also revealed that extraversion and openness are positively correlated with the dynamics of the brain networks.ConclusionThese findings highlight the importance of tracking the dynamics of functional brain networks to improve our understanding about the neural substrates of personality.


2019 ◽  
Vol 30 (3) ◽  
pp. 1087-1102
Author(s):  
Shi Gu ◽  
Cedric Huchuan Xia ◽  
Rastko Ciric ◽  
Tyler M Moore ◽  
Ruben C Gur ◽  
...  

AbstractAt rest, human brain functional networks display striking modular architecture in which coherent clusters of brain regions are activated. The modular account of brain function is pervasive, reliable, and reproducible. Yet, a complementary perspective posits a core–periphery or rich-club account of brain function, where hubs are densely interconnected with one another, allowing for integrative processing. Unifying these two perspectives has remained difficult due to the fact that the methodological tools to identify modules are entirely distinct from the methodological tools to identify core–periphery structure. Here, we leverage a recently-developed model-based approach—the weighted stochastic block model—that simultaneously uncovers modular and core–periphery structure, and we apply it to functional magnetic resonance imaging data acquired at rest in 872 youth of the Philadelphia Neurodevelopmental Cohort. We demonstrate that functional brain networks display rich mesoscale organization beyond that sought by modularity maximization techniques. Moreover, we show that this mesoscale organization changes appreciably over the course of neurodevelopment, and that individual differences in this organization predict individual differences in cognition more accurately than module organization alone. Broadly, our study provides a unified assessment of modular and core–periphery structure in functional brain networks, offering novel insights into their development and implications for behavior.


2015 ◽  
Vol 36 (7) ◽  
pp. 2483-2494 ◽  
Author(s):  
Adam P.R. Smith‐Collins ◽  
Karen Luyt ◽  
Axel Heep ◽  
Risto A. Kauppinen

Sign in / Sign up

Export Citation Format

Share Document