scholarly journals Combining Multiband Imaging, Photogrammetric Techniques, and FOSS GIS for Affordable Degradation Mapping of Stone Monuments

Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 304
Author(s):  
Efstathios Adamopoulos ◽  
Fulvio Rinaudo

The detailed documentation of degradation constitutes a fundamental step for weathering diagnosis and, consequently, for successful planning and implementation of conservation measures for stone heritage. Mapping the surface patterns of stone is a non-destructive procedure critical for the qualitative and quantitative rating of the preservation state. Furthermore, mapping is employed for the annotation of weathering categories and the calculation of damage indexes. However, it is often a time-consuming task, which is conducted manually. Thus, practical methods need to be developed to automatize degradation mapping without significantly increasing the diagnostic process’s cost for conservation specialists. This work aims to develop and evaluate a methodology based on affordable close-range sensing techniques, image processing, and free and open source software for the spatial description, annotation, qualitative analysis, and rating of stone weathering-induced damage. Low-cost cameras were used to record images in the visible, near-infrared, and thermal-infrared spectra. The application of photogrammetric techniques allowed for the generation of the necessary background, that was elaborated to extract thematic information. Digital image processing of the spatially and radiometrically corrected images and image mosaics enabled the straightforward transition to a spatial information environment simplifying the development of degradation maps. The digital thematic maps facilitated the rating of stone damage and the extraction of useful statistical data.

2020 ◽  
Vol 26 (2) ◽  
pp. 61-67
Author(s):  
Mohammed J. Alwazzan

AbstractDrawing blood and injecting drugs are common medical procedures, for which accurate identification of veins is needed to avoid causing unnecessary pain. In this paper, we propose a low-cost system for the detection of veins. The system emits near-infrared radiation from four light-emitting diodes (LEDs), with a charge-coupled device (CCD) camera located in the middle of the LEDs. The camera captures an image of the palm of the hand. A series of digital image-processing techniques, ranging from image enhancement and increased contrast to isolation using a threshold limit based on statistical properties, are applied to effectively isolate the veins from the rest of the image.


Author(s):  
P. Midulla

Abstract. This paper present a method for close range photogrammetry based on an camera positioning scheme in which two cameras capture an equal portion of an object at the same scale, but have different focal lengths and camera-to-object distances. This scheme is alternative to the stereoscopic scheme and is associated with a system of equations which permits one to calculate first the relief displacement of points on a photograph and then their relief relative to a reference plane. The obtained relief and relief displacement values can be used to produce low-cost orthophotographs by using software for image processing, which doesn’t need to be dedicated, but has to provide measurement and calculation functions. Moreover, this method also allows one to obtain three-dimensional coordinates, through further calculations.


2020 ◽  
Vol 2020 (15) ◽  
pp. 350-1-350-10
Author(s):  
Yin Wang ◽  
Baekdu Choi ◽  
Davi He ◽  
Zillion Lin ◽  
George Chiu ◽  
...  

In this paper, we will introduce a novel low-cost, small size, portable nail printer. The usage of this system is to print any desired pattern on a finger nail in just a few minutes. The detailed pre-processing procedures will be described in this paper. These include image processing to find the correct printing zone, and color management to match the patterns’ color. In each phase, a novel algorithm will be introduced to refine the result. The paper will state the mathematical principles behind each phase, and show the experimental results, which illustrate the algorithms’ capabilities to handle the task.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 196
Author(s):  
Araz Soltani Nazarloo ◽  
Vali Rasooli Sharabiani ◽  
Yousef Abbaspour Gilandeh ◽  
Ebrahim Taghinezhad ◽  
Mariusz Szymanek ◽  
...  

The purpose of this work was to investigate the detection of the pesticide residual (profenofos) in tomatoes by using visible/near-infrared spectroscopy. Therefore, the experiments were performed on 180 tomato samples with different percentages of profenofos pesticide (higher and lower values than the maximum residual limit (MRL)) as compared to the control (no pesticide). VIS/near infrared (NIR) spectral data from pesticide solution and non-pesticide tomato samples (used as control treatment) impregnated with different concentrations of pesticide in the range of 400 to 1050 nm were recorded by a spectrometer. For classification of tomatoes with pesticide content at lower and higher levels of MRL as healthy and unhealthy samples, we used different spectral pre-processing methods with partial least squares discriminant analysis (PLS-DA) models. The Smoothing Moving Average pre-processing method with the standard error of cross validation (SECV) = 4.2767 was selected as the best model for this study. In addition, in the calibration and prediction sets, the percentages of total correctly classified samples were 90 and 91.66%, respectively. Therefore, it can be concluded that reflective spectroscopy (VIS/NIR) can be used as a non-destructive, low-cost, and rapid technique to control the health of tomatoes impregnated with profenofos pesticide.


Author(s):  
Iza Sazanita Isa ◽  
Mohamad Khairul Faizi Mat Saad ◽  
Muhammad Haris Khusairi Mohmad Kadir ◽  
Ahmad Afifi Ahmad Afandi ◽  
Noor Khairiah A. Karim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document