scholarly journals Targeting Raf Kinase Inhibitory Protein Regulation and Function

Cancers ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 306 ◽  
Author(s):  
Ali Yesilkanal ◽  
Marsha Rosner

Raf Kinase Inhibitory Protein (RKIP) is a highly conserved kinase inhibitor that functions as a metastasis suppressor in a variety of cancers. Since RKIP can reprogram tumor cells to a non-metastatic state by rewiring kinase networks, elucidating the mechanism by which RKIP acts not only reveals molecular mechanisms that regulate metastasis, but also represents an opportunity to target these signaling networks therapeutically. Although RKIP is often lost during metastatic progression, the mechanism by which this occurs in tumor cells is complex and not well understood. In this review, we summarize our current understanding of RKIP regulation in tumors and consider experimental and computational strategies for recovering or mimicking its function by targeting mediators of metastasis.

Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 442 ◽  
Author(s):  
Ana Raquel-Cunha ◽  
Diana Cardoso-Carneiro ◽  
Rui M. Reis ◽  
Olga Martinho

Lung cancer is the most deadly neoplasm with the highest incidence in both genders, with non-small cell lung cancer (NSCLC) being the most frequent subtype. Somatic mutations within the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene are key drivers of NSCLC progression, with EGFR inhibitors being particularly beneficial for patients carrying the so-called “EGFR-sensitizing mutations”. However, patients eventually acquire resistance to these EGFR inhibitors, and a better knowledge of other driven and targetable proteins will allow the design of increasingly accurate drugs against patients’ specific molecular aberrations. Raf kinase inhibitory protein (RKIP) is an important modulator of relevant intracellular signaling pathways, including those controlled by EGFR, such as MAPK. It has been reported that it has metastasis suppressor activity and a prognostic role in several solid tumors, including lung cancer. In the present review, the potential use of RKIP in the clinic as a prognostic biomarker and predictor of therapy response in lung cancer is addressed.


2008 ◽  
Vol 61 (4) ◽  
pp. 524-529 ◽  
Author(s):  
F Al-Mulla ◽  
S Hagan ◽  
W Al-Ali ◽  
S P Jacob ◽  
A I Behbehani ◽  
...  

Aims:Raf kinase inhibitory protein (RKIP; also known as PEBP, for phosphatidylethanolamine-binding protein) is an endogenous inhibitor of the Raf– MAPK kinase (MEK)–MAP kinase pathway. It has emerged as a significant metastasis suppressor in a variety of human cancers including colorectal cancer (CRC) and was recently shown to regulate the spindle checkpoint in cultured cells. This study aims at correlating RKIP expression with chromosomal instability in colorectal cancer samples and identifies possible mechanisms of RKIP loss.Methods:Chromosomal instability was assessed using metaphase-based comparative genomic hybridisation (CGH) and loss of heterozygosity (LOH) in 65 cases with microsatellite stable CRC and correlated with RKIP expression. Methyl-specific PCR was used on DNA extracted from 82 cases with CRC to determine CpG methylation status at the RKIP promoter and the results correlated with RKIP protein expression.Results:We demonstrate for the first time that in microsatellite stable (MSS) CRC, the number of chromosomal losses is inversely proportional to RKIP expression levels. We also show that methylation of the RKIP promoter is a major mechanism by which RKIP expression is silenced in CRC.Conclusions:RKIP loss by hypermethylation of its promoter could have a significant influence on colorectal cancer aneuploidy, which might explain its association with metastatic progression.


2015 ◽  
Author(s):  
Ali E. Yesilkanal ◽  
Casey Frankenberger ◽  
Daniel Rabe ◽  
Gary L. Johnson ◽  
Marsha R. Rosner

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gautier Follain ◽  
Naël Osmani ◽  
Valentin Gensbittel ◽  
Nandini Asokan ◽  
Annabel Larnicol ◽  
...  

AbstractTumor progression and metastatic dissemination are driven by cell-intrinsic and biomechanical cues that favor the growth of life-threatening secondary tumors. We recently identified pro-metastatic vascular regions with blood flow profiles that are permissive for the arrest of circulating tumor cells. We have further established that such flow profiles also control endothelial remodeling, which favors extravasation of arrested CTCs. Yet, how shear forces control endothelial remodeling is unknown. In the present work, we aimed at dissecting the cellular and molecular mechanisms driving blood flow-dependent endothelial remodeling. Transcriptomic analysis of endothelial cells revealed that blood flow enhanced VEGFR signaling, among others. Using a combination of in vitro microfluidics and intravital imaging in zebrafish embryos, we now demonstrate that the early flow-driven endothelial response can be prevented upon specific inhibition of VEGFR tyrosine kinase and subsequent signaling. Inhibitory targeting of VEGFRs reduced endothelial remodeling and subsequent metastatic extravasation. These results confirm the importance of VEGFR-dependent endothelial remodeling as a driving force of CTC extravasation and metastatic dissemination. Furthermore, the present work suggests that therapies targeting endothelial remodeling might be a relevant clinical strategy in order to impede metastatic progression.


Sign in / Sign up

Export Citation Format

Share Document