scholarly journals Linking Cancer Metabolic Dysfunction and Genetic Instability through the Lens of Iron Metabolism

Cancers ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1077 ◽  
Author(s):  
Michael S. Petronek ◽  
Douglas R. Spitz ◽  
Garry R. Buettner ◽  
Bryan G. Allen

Iron (Fe) is an essential element that plays a fundamental role in a wide range of cellular functions, including cellular proliferation, DNA synthesis, as well as DNA damage and repair. Because of these connections, iron has been strongly implicated in cancer development. Cancer cells frequently have changes in the expression of iron regulatory proteins. For example, cancer cells frequently upregulate transferrin (increasing uptake of iron) and down regulate ferroportin (decreasing efflux of intracellular iron). These changes increase the steady-state level of intracellular redox active iron, known as the labile iron pool (LIP). The LIP typically contains approximately 2% intracellular iron, which primarily exists as ferrous iron (Fe2+). The LIP can readily contribute to oxidative distress within the cell through Fe2+-dioxygen and Fenton chemistries, generating the highly reactive hydroxyl radical (HO•). Due to the reactive nature of the LIP, it can contribute to increased DNA damage. Mitochondrial dysfunction in cancer cells results in increased steady-state levels of hydrogen peroxide and superoxide along with other downstream reactive oxygen species. The increased presence of H2O2 and O2•− can increase the LIP, contributing to increased mitochondrial uptake of iron as well as genetic instability. Thus, iron metabolism and labile iron pools may play a central role connecting the genetic mutational theories of cancer to the metabolic theories of cancer.

Medicines ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 85 ◽  
Author(s):  
Andronicos Yiannikourides ◽  
Gladys Latunde-Dada

Iron is a vital trace element for humans, as it plays a crucial role in oxygen transport, oxidative metabolism, cellular proliferation, and many catalytic reactions. To be beneficial, the amount of iron in the human body needs to be maintained within the ideal range. Iron metabolism is one of the most complex processes involving many organs and tissues, the interaction of which is critical for iron homeostasis. No active mechanism for iron excretion exists. Therefore, the amount of iron absorbed by the intestine is tightly controlled to balance the daily losses. The bone marrow is the prime iron consumer in the body, being the site for erythropoiesis, while the reticuloendothelial system is responsible for iron recycling through erythrocyte phagocytosis. The liver has important synthetic, storing, and regulatory functions in iron homeostasis. Among the numerous proteins involved in iron metabolism, hepcidin is a liver-derived peptide hormone, which is the master regulator of iron metabolism. This hormone acts in many target tissues and regulates systemic iron levels through a negative feedback mechanism. Hepcidin synthesis is controlled by several factors such as iron levels, anaemia, infection, inflammation, and erythropoietic activity. In addition to systemic control, iron balance mechanisms also exist at the cellular level and include the interaction between iron-regulatory proteins and iron-responsive elements. Genetic and acquired diseases of the tissues involved in iron metabolism cause a dysregulation of the iron cycle. Consequently, iron deficiency or excess can result, both of which have detrimental effects on the organism.


2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1283-1283
Author(s):  
Mikyoung You ◽  
Soonkyu Chung

Abstract Objectives Intracellular iron homeostasis is tightly regulated in posttranscriptional levels via iron regulatory proteins (IRPs). IRPs bind to the iron-responsive elements (IREs), leading to either mRNA translation or stability. Our recent study demonstrated that iron metabolism is intimately linked with adipose tissue browning and thermogenic activation. However, the role of IRP/IRE interactions in the adipose tissue is poorly understood. We aim to characterize the IRP/IRE interactions in the adipose tissue in terms of depot-specificity and thermogenic potential. Methods To induce adipocyte browning, mice were administrated with beta-3 adrenoceptor agonist CL316243 (CL) for 5 days, and different depots of adipose tissue of epididymal (eWAT), inguinal (iWAT), brown (BAT), and liver were collected. Iron metabolism and thermogenesis were evaluated. To investigate the IRP/IRE binding, electrophoretic mobility shift assay (EMSA) was performed in the cytosolic using the fluorescence-labeled IRE (IR-IRE). To distinguish the IRE binding with IRP1 and 2, the cytosolic fraction from IRP1 and 2 knockout mice were used as positive controls. Results In a normal temperature, the constitutive IRP/IRE binding was found in the BAT, but not in the eWAT and iWAT. In response to CL treatment, iron content and transferrin receptor levels significantly increased in the WAT. Accordingly, the IRE/IRPs binding significantly increased in the CL-treated iWAT. Genetic deletion of IRP1 or 2 poses a marginal impact on constitutively active BAT development, suggesting IRP1 and 2 plays a compensatory role. Unlikely to BAT, the deletion of either IRP1 or 2 failed to induce WAT browning in the IRP1 and 2 knockout mice with CL stimulation. Consistently, both IRE binding to IRP1 and 2 were manifest in the CL treated iWAT, implicating that IRP1 and 2 plays a separate and synergistic function for WAT browning. Conclusions Our study defined the depot-specific iron regulatory metabolism in the adipose tissue using an innovative EMSA method. We demonstrated that, for the first time in our knowledge, IRE binding to both IRP1 and IRP2 is indispensable for the thermogenic activation of WAT, which is distinct from the iron regulatory mechanism found in the BAT. We propose that iron metabolism in the WAT is a novel determinant for WAT browning and thermogenic energy expenditure. Funding Sources None.


2020 ◽  
Vol 48 (21) ◽  
pp. 12234-12251
Author(s):  
Torkild Visnes ◽  
Carlos Benítez-Buelga ◽  
Armando Cázares-Körner ◽  
Kumar Sanjiv ◽  
Bishoy M F Hanna ◽  
...  

Abstract Altered oncogene expression in cancer cells causes loss of redox homeostasis resulting in oxidative DNA damage, e.g. 8-oxoguanine (8-oxoG), repaired by base excision repair (BER). PARP1 coordinates BER and relies on the upstream 8-oxoguanine-DNA glycosylase (OGG1) to recognise and excise 8-oxoG. Here we hypothesize that OGG1 may represent an attractive target to exploit reactive oxygen species (ROS) elevation in cancer. Although OGG1 depletion is well tolerated in non-transformed cells, we report here that OGG1 depletion obstructs A3 T-cell lymphoblastic acute leukemia growth in vitro and in vivo, validating OGG1 as a potential anti-cancer target. In line with this hypothesis, we show that OGG1 inhibitors (OGG1i) target a wide range of cancer cells, with a favourable therapeutic index compared to non-transformed cells. Mechanistically, OGG1i and shRNA depletion cause S-phase DNA damage, replication stress and proliferation arrest or cell death, representing a novel mechanistic approach to target cancer. This study adds OGG1 to the list of BER factors, e.g. PARP1, as potential targets for cancer treatment.


2020 ◽  
Vol 21 (23) ◽  
pp. 9248
Author(s):  
Mingrui Duan ◽  
Jenna Ulibarri ◽  
Ke Jian Liu ◽  
Peng Mao

Cisplatin is a chemotherapeutic drug used for the treatment of a number of cancers. The efficacy of cisplatin relies on its binding to DNA and the induction of cytotoxic DNA damage to kill cancer cells. Cisplatin-based therapy is best known for curing testicular cancer; however, treatment of other solid tumors with cisplatin has not been as successful. Pre-clinical and clinical studies have revealed nucleotide excision repair (NER) as a major resistance mechanism against cisplatin in tumor cells. NER is a versatile DNA repair system targeting a wide range of helix-distorting DNA damage. The NER pathway consists of multiple steps, including damage recognition, pre-incision complex assembly, dual incision, and repair synthesis. NER proteins can recognize cisplatin-induced DNA damage and remove the damage from the genome, thereby neutralizing the cytotoxicity of cisplatin and causing drug resistance. Here, we review the molecular mechanism by which NER repairs cisplatin damage, focusing on the recent development of genome-wide cisplatin damage mapping methods. We also discuss how the expression and somatic mutations of key NER genes affect the response of cancer cells to cisplatin. Finally, small molecules targeting NER factors provide important tools to manipulate NER capacity in cancer cells. The status of research on these inhibitors and their implications in cancer treatment will be discussed.


2019 ◽  
Vol 26 (6) ◽  
pp. 435-448
Author(s):  
Priyanka Biswas ◽  
Dillip K. Sahu ◽  
Kalyanasis Sahu ◽  
Rajat Banerjee

Background: Aminoacyl-tRNA synthetases play an important role in catalyzing the first step in protein synthesis by attaching the appropriate amino acid to its cognate tRNA which then transported to the growing polypeptide chain. Asparaginyl-tRNA Synthetase (AsnRS) from Brugia malayi, Leishmania major, Thermus thermophilus, Trypanosoma brucei have been shown to play an important role in survival and pathogenesis. Entamoeba histolytica (Ehis) is an anaerobic eukaryotic pathogen that infects the large intestines of humans. It is a major cause of dysentery and has the potential to cause life-threatening abscesses in the liver and other organs making it the second leading cause of parasitic death after malaria. Ehis-AsnRS has not been studied in detail, except the crystal structure determined at 3 Å resolution showing that it is primarily α-helical and dimeric. It is a homodimer, with each 52 kDa monomer consisting of 451 amino acids. It has a relatively short N-terminal as compared to its human and yeast counterparts. Objective: Our study focusses to understand certain structural characteristics of Ehis-AsnRS using biophysical tools to decipher the thermodynamics of unfolding and its binding properties. Methods: Ehis-AsnRS was cloned and expressed in E. coli BL21DE3 cells. Protein purification was performed using Ni-NTA affinity chromatography, following which the protein was used for biophysical studies. Various techniques such as steady-state fluorescence, quenching, circular dichroism, differential scanning fluorimetry, isothermal calorimetry and fluorescence lifetime studies were employed for the conformational characterization of Ehis-AsnRS. Protein concentration for far-UV and near-UV circular dichroism experiments was 8 µM and 20 µM respectively, while 4 µM protein was used for the rest of the experiments. Results: The present study revealed that Ehis-AsnRS undergoes unfolding when subjected to increasing concentration of GdnHCl and the process is reversible. With increasing temperature, it retains its structural compactness up to 45ºC before it unfolds. Steady-state fluorescence, circular dichroism and hydrophobic dye binding experiments cumulatively suggest that Ehis-AsnRS undergoes a two-state transition during unfolding. Shifting of the transition mid-point with increasing protein concentration further illustrate that dissociation and unfolding processes are coupled indicating the absence of any detectable folded monomer. Conclusion: This article indicates that GdnHCl induced denaturation of Ehis-AsnRS is a two – state process and does not involve any intermediate; unfolding occurs directly from native dimer to unfolded monomer. The solvent exposure of the tryptophan residues is biphasic, indicating selective quenching. Ehis-AsnRS also exhibits a structural as well as functional stability over a wide range of pH.


Sign in / Sign up

Export Citation Format

Share Document