scholarly journals MicroRNA 452 Regulates Cell Proliferation, Cell Migration, and Angiogenesis in Colorectal Cancer by Suppressing VEGFA Expression

Cancers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1613 ◽  
Author(s):  
Ji Su Mo ◽  
Won Cheol Park ◽  
Suck-Chei Choi ◽  
Ki Jung Yun ◽  
Soo-Cheon Chae

The human microRNA 452 (MIR452) was identified as a colorectal cancer (CRC)-associated micro RNA (miRNA) by miRNA expression profiling of human CRC tissues versus normal colorectal tissues. It was significantly up-regulated in human CRC tissues. However, the functional mechanisms of MIR452 and its target genes in CRC remain unclear. We identified 27 putative MIR452 target genes, and found that the vascular endothelial growth factor A (VEGFA) was a direct target gene of MIR452. Both cellular and extracellular VEGFA levels were significantly downregulated in CRC cells upon their transfection with MIR452 or siVEGFA. VEGFA expression was frequently downregulated in human CRC tissues in comparison with that in their healthy counterparts. We showed that MIR452 regulated the expression of genes in the VEGFA-mediated signal transduction pathways vascular endothelial growth factor receptor 1 (VEGFR2)–mitogen-activated protein kinase (MAPK) and VEGFR2–SRC proto-oncogene non-receptor tyrosine kinase (SRC) in CRC cells. Immunohistological analyses of xenografted MIR452-overexpressing CRC cells in mice showed that MIR452 regulated cell proliferation and angiogenesis. Furthermore, aortic ring angiogenesis assay in rats clearly showed that the number of microvessels formed was significantly reduced by MIR452 transfection. Our findings suggest that MIR452 regulates cell proliferation, cell migration, and angiogenesis by suppressing VEGFA expression in early CRC progression; therefore, MIR452 may have therapeutic value in relation to human CRC.

Author(s):  
Anas Khaleel ◽  
Rowan AlEjielat ◽  
Cristina I. Batarseh ◽  
Abdallah Ahmed Elbakkoush ◽  
Amneh Tarkhan ◽  
...  

Background: Colorectal cancer (CRC) is currently the third most common cancer type in males and the second most occurring in females. The role of microRNA (miRNA) in the development of colorectal cancer is not fully elucidated. Therefore, understanding the mechanistic interaction between miRNA and their target oncogenes may hold great importance as a possible target for interventional anticancer therapy. Aims: To identify miRNAs that are part of the regulating pathway of Monocarboxylate Transporter-4 (MCT4) and Vascular Endothelial Growth Factor (VEGF) oncogenes. Study Design: We used publicly available prediction tools (e.g. TargetScan, MicroCosm, PicTar, and DIANA-microT-CDS) to identify the possible miRNA that target the two oncogenes. Methodology: We used the GeneMania database to visualize the network and verify gene names and remove ambiguity and duplications.  Furthermore, we used miRTarBase database to identify experimentally validated targets which we used to further confirm miRNA-oncogene relationships.  Finally, we utilized miR-Mfold web-tool to further visualize the circular structures and the simulated miR-1 and miR-206 targeting arrangements. Results: We found two putative miRNA (miR-1 and miR-206) that may downregulate MCT4 coded by SLC16A3 gene and VEGF which is coded by VEGF gene. We found relationships between the validated target genes of miR-1 and miR-206 through GeneMania which we extracted from the literature. And we elucidated the proposed structure of these two miRNAs through miR-Mfold web-tool. Conclusion: Our results elucidated a novel regulation pathway in CRC cells and may suggest a potential therapeutic approach for CRC therapy. MiR-1 and miR-206 may help cells go to apoptosis and inhibit the angiogenesis of colorectal cancer cells by down-regulation of MCT4 and VEGF proteins in tumor tissues.


2008 ◽  
Vol 24 (6) ◽  
pp. 433
Author(s):  
Tai-woong Jo ◽  
Sung-Chul Lim ◽  
Sungsoo Kim ◽  
Young-Don Min ◽  
Kyung-Jong Kim

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Sinem Tunçer ◽  
Rafig Gurbanov

AbstractObjectivesThe expression level of Vascular Endothelial Growth Factor (VEGF) is assumed as a prognostic marker for several tumor types, including colorectal cancer. Therefore, the determination of pre- and post-therapy levels of VEGF appears to have great value in the assessment of tumor prognosis. Enzyme-Linked Immunosorbent Assay (ELISA) is commonly used for the determination of serum or plasma VEGF levels, but the method is costly and time-consuming. In this study, we aimed to describe a rapid and cost-effective analysis method to discriminate VEGF overexpressing colorectal cancer-derived conditioned medium (CM).MethodsAttenuated Total Reflection (ATR)-Fourier Transform Infrared (FTIR) spectroscopy, combined with Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), was used to differentiate VEGF overexpressing colorectal cancer cell line CM from CM obtained from the corresponding control cells which express and secrete relatively lower amount of VEGF.ResultsSamples belong to VEGF overexpressing colorectal cancer cells were clearly distinguished from the control group with very high PC scores as PC1 + PC2 = 96%. Besides, a 100% accurate distinction between these two groups was achieved by the LDA analysis.ConclusionsATR-FTIR spectroscopy combined with pattern recognition techniques was able to discriminate CM of VEGF overexpressing colorectal cancer cells with high efficiency and accuracy.


2012 ◽  
Vol 32 (5) ◽  
pp. 884-895 ◽  
Author(s):  
Fabricio Simão ◽  
Aline S Pagnussat ◽  
Ji Hae Seo ◽  
Deepti Navaratna ◽  
Wendy Leung ◽  
...  

Resveratrol may be a powerful way of protecting the brain against a wide variety of stress and injury. Recently, it has been proposed that resveratrol not only reduces brain injury but also promotes recovery after stroke. But the underlying mechanisms are unclear. Here, we tested the hypothesis that resveratrol promotes angiogenesis in cerebral endothelial cells and dissected the signaling pathways involved. Treatment of cerebral endothelial cells with resveratrol promoted proliferation, migration, and tube formation in Matrigel assays. Consistent with these pro-angiogenic responses, resveratrol altered endothelial morphology resulting in cytoskeletal rearrangements of β-catenin and VE-cadherin. These effects of resveratrol were accompanied by activation of phosphoinositide 3 kinase (PI3-K)/Akt and Mitogen-Activated Protein Kinase (MAPK)/ERK signaling pathways that led to endothelial nitric oxide synthase upregulation and increased nitric oxide (NO) levels. Subsequently, elevated NO signaling increased vascular endothelial growth factor and matrix metalloproteinase levels. Sequential blockade of these signaling steps prevented resveratrol-induced angiogenesis in cerebral endothelial cells. These findings provide a mechanistic basis for the potential use of resveratrol as a candidate therapy to promote angiogenesis and neurovascular recovery after stroke.


Sign in / Sign up

Export Citation Format

Share Document