scholarly journals Thirty Years of Cancer Nanomedicine: Success, Frustration, and Hope

Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1855 ◽  
Author(s):  
Lucia Salvioni ◽  
Maria Antonietta Rizzuto ◽  
Jessica Armida Bertolini ◽  
Laura Pandolfi ◽  
Miriam Colombo ◽  
...  

Starting with the enhanced permeability and retention (EPR) effect discovery, nanomedicine has gained a crucial role in cancer treatment. The advances in the field have led to the approval of nanodrugs with improved safety profile and still inspire the ongoing investigations. However, several restrictions, such as high manufacturing costs, technical challenges, and effectiveness below expectations, raised skeptical opinions within the scientific community about the clinical relevance of nanomedicine. In this review, we aim to give an overall vision of the current hurdles encountered by nanotherapeutics along with their design, development, and translation, and we offer a prospective view on possible strategies to overcome such limitations.

Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4437
Author(s):  
Maria Cristina Bonferoni ◽  
Giovanna Rassu ◽  
Elisabetta Gavini ◽  
Milena Sorrenti ◽  
Laura Catenacci ◽  
...  

Surgical resection is the gold standard for the treatment of many kinds of tumor, but its success depends on the early diagnosis and the absence of metastases. However, many deep-seated tumors (liver, pancreas, for example) are often unresectable at the time of diagnosis. Chemotherapies and radiotherapies are a second line for cancer treatment. The “enhanced permeability and retention” (EPR) effect is believed to play a fundamental role in the passive uptake of drug-loaded nanocarriers, for example polymeric nanoparticles, in deep-seated tumors. However, criticisms of the EPR effect were recently raised, particularly in advanced human cancers: obstructed blood vessels and suppressed blood flow determine a heterogeneity of the EPR effect, with negative consequences on nanocarrier accumulation, retention, and intratumoral distribution. Therefore, to improve the nanomedicine uptake, there is a strong need for “EPR enhancers”. Electrochemotherapy represents an important tool for the treatment of deep-seated tumors, usually combined with the systemic (intravenous) administration of anticancer drugs, such as bleomycin or cisplatin. A possible new strategy, worthy of investigation, could be the use of this technique as an “EPR enhancer” of a target tumor, combined with the intratumoral administration of drug-loaded nanoparticles. This is a general overview of the rational basis for which EP could be envisaged as an “EPR enhancer” in nanomedicine.


2021 ◽  
Vol 11 (2) ◽  
pp. 124
Author(s):  
Dong Huang ◽  
Lingna Sun ◽  
Leaf Huang ◽  
Yanzuo Chen

The use of nanomedicine for antitumor therapy has been extensively investigated for a long time. Enhanced permeability and retention (EPR) effect-mediated drug delivery is currently regarded as an effective way to bring drugs to tumors, especially macromolecular drugs and drug-loaded pharmaceutical nanocarriers. However, a disordered vessel network, and occluded or embolized tumor blood vessels seriously limit the EPR effect. To augment the EPR effect and improve curative effects, in this review, we focused on the perspective of tumor blood vessels, and analyzed the relationship among abnormal angiogenesis, abnormal vascular structure, irregular blood flow, extensive permeability of tumor vessels, and the EPR effect. In this commentary, nanoparticles including liposomes, micelles, and polymers extravasate through the tumor vasculature, which are based on modulating tumor vessels, to increase the EPR effect, thereby increasing their therapeutic effect.


2018 ◽  
pp. 75-99
Author(s):  
Vikrant

Nanobiotechnology deals with the application of the tools and processes of nanotechnology to build devices for studying and manipulating biological systems. Current approaches of diagnosis and treatment of various diseases, especially cancer have major limitations such as poor sensitivity or specificity and drug toxicities respectively. Novel and improved methods of cancer detection based on nanoparticles are required to be developed. Some of the nanoparticles used for diagnostic purposes are paramagnetic nanoparticles, quantum dots, nanoshells and nanosomes. Drugs with high toxic potential like cancer chemotherapeutic drugs can be given with a better safety profile with the utility of nanotechnology. These can be made to act specifically at the target tissue by active as well as passive means. Simultaneously, other alternative ways of therapy such as heat induced killings of cancer cells by nanoshells and gene therapy are also being developed. Thus, it indicates that nanomedicine in future would play a crucial role in the treatment of human diseases.


Author(s):  
Vikrant

Nanobiotechnology deals with the application of the tools and processes of nanotechnology to build devices for studying and manipulating biological systems. Current approaches of diagnosis and treatment of various diseases, especially cancer have major limitations such as poor sensitivity or specificity and drug toxicities respectively. Novel and improved methods of cancer detection based on nanoparticles are required to be developed. Some of the nanoparticles used for diagnostic purposes are paramagnetic nanoparticles, quantum dots, nanoshells and nanosomes. Drugs with high toxic potential like cancer chemotherapeutic drugs can be given with a better safety profile with the utility of nanotechnology. These can be made to act specifically at the target tissue by active as well as passive means. Simultaneously, other alternative ways of therapy such as heat induced killings of cancer cells by nanoshells and gene therapy are also being developed. Thus, it indicates that nanomedicine in future would play a crucial role in the treatment of human diseases.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Mahmoud Zaki El-Readi ◽  
Mohammad Ahmad Althubiti

Cancer is considered as one of the most challenging health care problems. Though there are many approved drugs that can be used for cancer therapy, drug resistance and delivery are among of the barriers of the treatment. In addition, pathological characteristics of tumors and their abnormal blood vessel architecture and function also reduce the efficiency of the conventional cancer treatment. Therefore, looking for techniques that can increase the efficacy of the therapy such as nanoparticles (NPs) is vital. NPs have many properties such as their small size, ability to load various drugs and large surface area, and ability to increase the absorption of conjugated. Therefore, the NPs have been considered as excellent tumor-targeting vehicles. The recent nanoscale vehicles include liposomes, polymeric nanoparticles, magnetic nanoparticles, dendrimers, and nanoshells; lipid-based NPs have been used as conjugates. There are few examples of approved conjugated anticancer NPs including AmBisome® (amphotericin B liposomal) and Doxil® (liposomal doxorubicin). There are many other conjugated anticancer drugs at different stages of clinical trials for treatment of various cancers. This review will discuss the properties of different NPs in cancer treatment and their benefits of overcoming multidrug resistance. In addition, recent advances of using nanomedicine in different approaches of cancer treatment such as chemotherapy, radiotherapy, and immunotherapy will be highlighted in this review.


Author(s):  
Nick Gebruers ◽  
Hanne Verbelen ◽  
Tessa De Vrieze ◽  
Lore Vos ◽  
Nele Devoogdt ◽  
...  

Nanophotonics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1673-1688 ◽  
Author(s):  
Fuyuki F. Inagaki ◽  
Aki Furusawa ◽  
Peter L. Choyke ◽  
Hisataka Kobayashi

AbstractTo date, the delivery of nanosized therapeutic agents to cancers largely relies on the enhanced permeability and retention (EPR) effects that are caused by the leaky nature of cancer vasculature. Whereas leaky vessels are often found in mouse xenografts, nanosized agents have demonstrated limited success in humans due to the relatively small magnitude of the EPR effect in naturally occurring cancers. To achieve the superior delivery of nanosized agents, alternate methods of increasing permeability and retention are needed. Near-infrared photoimmunotherapy (NIR-PIT) is a recently reported therapy that relies on an antibody-photon absorber conjugate that binds to tumors and then is activated by light. NIR-PIT causes an increase in nanodrug delivery by up to 24-fold compared to untreated tumors in which only the EPR effect is present. This effect, termed super-EPR (SUPR), can enhance the delivery of a wide variety of nanosized agents, including nanoparticles, antibodies, and protein-binding small-molecular-weight agents into tumors. Therefore, taking advantage of the SUPR effect after NIR-PIT may be a promising avenue to use a wide variety of nanodrugs in a highly effective manner.


2019 ◽  
Vol 10 (6) ◽  
pp. 72-78
Author(s):  
Murhula Mongane Pascal ◽  
B Prakash Rao ◽  
Usha GK ◽  
Rama Magar ◽  
Twinkle Singh

2011 ◽  
Vol 1 (2) ◽  
pp. 293-313 ◽  
Author(s):  
Letizia Caronia

Contemporary researchers can rely upon a wide repertoire of different and legitimized ways of representing field dialogues in scientific texts. This article addresses the issue of the crucial role these ways of reporting dialogues play in creating different data from the ‘same’ raw material and in the construction of very different kinds of scientific understanding of the phenomenon the original dialogues supposedly enlighten. By empirically illustrating this point, the author concludes by arguing in favor of the unavoidable rhetorical roots of scientific understanding. This typical relativistic claim does not lead to some kind of nihilistic stance. Rather, it delineates a clear zone of distributed responsibility. By defining what kind of knowledge they expect from a scientific account, the scientific community and, in a less visible way, the readers are crucial agents in orienting the researcher’s rhetorical choice as to represent dialogues-in-the-field. The researcher’s choice is, therefore, a profoundly dialogical decision.


Sign in / Sign up

Export Citation Format

Share Document