scholarly journals A Preclinical Embryonic Zebrafish Xenograft Model to Investigate CAR T Cells in Vivo

Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 567 ◽  
Author(s):  
Susana Pascoal ◽  
Benjamin Salzer ◽  
Eva Scheuringer ◽  
Andrea Wenninger-Weinzierl ◽  
Caterina Sturtzel ◽  
...  

Chimeric antigen receptor (CAR) T cells have proven to be a powerful cellular therapy for B cell malignancies. Massive efforts are now being undertaken to reproduce the high efficacy of CAR T cells in the treatment of other malignancies. Here, predictive preclinical model systems are important, and the current gold standard for preclinical evaluation of CAR T cells are mouse xenografts. However, mouse xenograft assays are expensive and slow. Therefore, an additional vertebrate in vivo assay would be beneficial to bridge the gap from in vitro to mouse xenografts. Here, we present a novel assay based on embryonic zebrafish xenografts to investigate CAR T cell-mediated killing of human cancer cells. Using a CD19-specific CAR and Nalm-6 leukemia cells, we show that live observation of killing of Nalm-6 cells by CAR T cells is possible in zebrafish embryos. Furthermore, we applied Fiji macros enabling automated quantification of Nalm-6 cells and CAR T cells over time. In conclusion, we provide a proof-of-principle study that embryonic zebrafish xenografts can be used to investigate CAR T cell-mediated killing of tumor cells. This assay is cost-effective, fast, and offers live imaging possibilities to directly investigate CAR T cell migration, engagement, and killing of effector cells.

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A121-A121
Author(s):  
Nina Chu ◽  
Michael Overstreet ◽  
Ryan Gilbreth ◽  
Lori Clarke ◽  
Christina Gesse ◽  
...  

BackgroundChimeric antigen receptors (CARs) are engineered synthetic receptors that reprogram T cell specificity and function against a given antigen. Autologous CAR-T cell therapy has demonstrated potent efficacy against various hematological malignancies, but has yielded limited success against solid cancers. MEDI7028 is a CAR that targets oncofetal antigen glypican-3 (GPC3), which is expressed in 70–90% of hepatocellular carcinoma (HCC), but not in normal liver tissue. Transforming growth factor β (TGFβ) secretion is increased in advanced HCC, which creates an immunosuppressive milieu and facilitates cancer progression and poor prognosis. We tested whether the anti-tumor efficacy of a GPC3 CAR-T can be enhanced with the co-expression of dominant-negative TGFβRII (TGFβRIIDN).MethodsPrimary human T cells were lentivirally transduced to express GPC3 CAR both with and without TGFβRIIDN. Western blot and flow cytometry were performed on purified CAR-T cells to assess modulation of pathways and immune phenotypes driven by TGFβ in vitro. A xenograft model of human HCC cell line overexpressing TGFβ in immunodeficient mice was used to investigate the in vivo efficacy of TGFβRIIDN armored and unarmored CAR-T. Tumor infiltrating lymphocyte populations were analyzed by flow cytometry while serum cytokine levels were quantified with ELISA.ResultsArmoring GPC3 CAR-T with TGFβRIIDN nearly abolished phospho-SMAD2/3 expression upon exposure to recombinant human TGFβ in vitro, indicating that the TGFβ signaling axis was successfully blocked by expression of the dominant-negative receptor. Additionally, expression of TGFβRIIDN suppressed TGFβ-driven CD103 upregulation, further demonstrating attenuation of the pathway by this armoring strategy. In vivo, the TGFβRIIDN armored CAR-T achieved superior tumor regression and delayed tumor regrowth compared to the unarmored CAR-T. The armored CAR-T cells infiltrated HCC tumors more abundantly than their unarmored counterparts, and were phenotypically less exhausted and less differentiated. In line with these observations, we detected significantly more interferon gamma (IFNγ) at peak response and decreased alpha-fetoprotein in the serum of mice treated with armored cells compared to mice receiving unarmored CAR-T, demonstrating in vivo functional superiority of TGFβRIIDN armored CAR-T therapy.ConclusionsArmoring GPC3 CAR-T with TGFβRIIDN abrogates the signaling of TGFβ in vitro and enhances the anti-tumor efficacy of GPC3 CAR-T against TGFβ-expressing HCC tumors in vivo, proving TGFβRIIDN to be an effective armoring strategy against TGFβ-expressing solid malignancies in preclinical models.Ethics ApprovalThe study was approved by AstraZeneca’s Ethics Board and Institutional Animal Care and Use Committee (IACUC).


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 22-23
Author(s):  
Pinar Ataca Atilla ◽  
Mary K McKenna ◽  
Norihiro Watanabe ◽  
Maksim Mamonkin ◽  
Malcolm K. Brenner ◽  
...  

Introduction: Efforts to safely and effectively treat acute myeloid leukemia (AML) by targeting a single leukemia associated antigen with chimeric antigen receptor T (CAR T) cells have had limited success. We determined whether combinatorial expression of chimeric antigen receptors directed to two different AML associated antigens would augment tumor eradication and prevent relapse in targets with heterogeneous expression of myeloid antigens. Methods: We generated CD123 and CD33 targeting CARs; each containing a 4-1BBz or CD28z endodomain. We analyzed the anti-tumor activity of T cells expressing each CAR alone or in co-transduction with a CLL-1 CAR with CD28z endodomain and CD8 hinge previously optimized for use in our open CAR-T cell trial for AML (NCT04219163). We analyzed CAR-T cell phenotype, expansion and transduction efficacy by flow cytometry and assessed function by in vitro and in vivo activity against AML cell lines expressing high, intermediate or low levels of the target antigens (Molm 13= CD123 high, CD33 high, CLL-1 intermediate, KG1a= CD123 low, CD33 low, CLL-1 low and HL60= CD123 low, CD33 intermediate, CLL-1 intermediate/high) For in vivo studies we used NOD.SCID IL-2Rg-/-3/GM/SF (NSGS) mice with established leukemia, determining antitumor activity by bioluminescence imaging. Results: We obtained high levels of gene transfer and expression with both single (CD33.4-1BBʓ, CD123.4-1BBʓ, CD33.CD28ʓ, CD123.CD28ʓ, CLL-1 CAR) and double transduction CD33/CD123.4-1BBʓ or CD33/CD123.CD28ʓ) although single-transductants had marginally higher total CAR expression of 70%-80% versus 60-70% after co-transduction. Constructs containing CD28 co-stimulatory domain exhibited rapid expansion with elevated peak levels compared to 41BB co-stim domain irrespective of the CAR specificity. (p<0.001) (Fig 1a). In 72h co-culture assays, we found consistently improved anti-tumor activity by CAR Ts expressing CLL-1 in combination either with CD33 or with CD123 compared to T cells expressing CLL-1 CAR alone. The benefit of dual expression was most evident when the target cell line expressed low levels of one or both target antigens (e.g. KG1a) (Fig 1b) (P<0.001). No antigen escape was detected in residual tumor. Mechanistically, dual expression was associated with higher pCD3ʓ levels compared to single CAR T cells on exposure to any given tumor (Fig 1c). Increased pCD3ʓ levels were in turn associated with augmented CAR-T degranulation (assessed by CD107a expression) in both CD4 and CD8 T cell populations and with increased TNFα and IFNɣ production (p<0.001 Fig 1d). In vivo, combinatorial targeting with CD123/CD33.CD28ʓ and CLL-1 CAR T cells improved tumor control and animal survival in lines (KG1a, MOLM13 and HL60) expressing diverse levels of the target antigens (Fig 2). Conclusion: Combinatorial targeting of T cells with CD33 or CD123.CD28z CARs and CLL-1-CAR improves CAR T cell activation associated with superior recruitment/phosphorylation of CD3ʓ, producing enhanced effector function and tumor control. The events that lead to increased pCD3ʓ after antigen engagement in the dual transduced cells may in part be due to an overall increase in CAR expression but may also reflect superior CAR recruitment after antigen engagement. We are now comparing the formation, structure, and stability of immune synapses in single and dual targeting CARs for AML. Disclosures Brenner: Walking Fish: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Bluebird Bio: Membership on an entity's Board of Directors or advisory committees; Tumstone: Membership on an entity's Board of Directors or advisory committees; Tessa Therapeutics: Membership on an entity's Board of Directors or advisory committees, Other: Founder; Maker Therapeutics: Current equity holder in private company, Membership on an entity's Board of Directors or advisory committees, Other: Founder; Memmgen: Membership on an entity's Board of Directors or advisory committees; Allogene: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees. Atilla:Bluebird Bio: Membership on an entity's Board of Directors or advisory committees; Tumstone: Membership on an entity's Board of Directors or advisory committees; Tessa Therapeutics: Membership on an entity's Board of Directors or advisory committees, Other: founder; Marker Therapeuticsa: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees, Other: Founder, Patents & Royalties; Allogene: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees; Walking Fish: Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees, Patents & Royalties; Memgen: Membership on an entity's Board of Directors or advisory committees; KUUR: Membership on an entity's Board of Directors or advisory committees.


2021 ◽  
Author(s):  
Waqas Nawaz ◽  
Bilian Huang ◽  
Shijie Xu ◽  
Yanlei Li ◽  
Linjing Zhu ◽  
...  

AbstractChimeric antigen receptor (CAR) T cell therapy is the most active field in immuno-oncology and brings substantial benefit to patients with B cell malignancies. However, the complex procedure for CAR T cell generation hampers its widespread applications. Here, we describe a novel approach in which human CAR T cells can be generated within the host upon injecting an Adeno-associated virus (AAV)vector carrying the CAR gene, which we call AAV delivering CAR gene therapy (ACG). Upon single infusion into a humanized NCG tumor mouse model of human T cell leukemia, AAV generates sufficient numbers of potent in vivo CAR cells, resulting in tumor regression; these in vivo generated CAR cells produce antitumor immunological characteristics. This instantaneous generation of in vivo CAR T cells may bypass the need for patient lymphodepletion, as well as the ex vivo processes of traditional CAR T cell production, which may make CAR therapy simpler and less expensive. It may allow the development of intricate, individualized treatments in the form of on-demand and diverse therapies.Significance StatementAAV can generate enough CAR cells within the host. That act as a living drug, distributed throughout the body, and persist for weeks, with the ability to recognize and destroy tumor cells.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A133-A133
Author(s):  
Cheng-Fu Kuo ◽  
Yi-Chiu Kuo ◽  
Miso Park ◽  
Zhen Tong ◽  
Brenda Aguilar ◽  
...  

BackgroundMeditope is a small cyclic peptide that was identified to bind to cetuximab within the Fab region. The meditope binding site can be grafted onto any Fab framework, creating a platform to uniquely and specifically target monoclonal antibodies. Here we demonstrate that the meditope binding site can be grafted onto chimeric antigen receptors (CARs) and utilized to regulate and extend CAR T cell function. We demonstrate that the platform can be used to overcome key barriers to CAR T cell therapy, including T cell exhaustion and antigen escape.MethodsMeditope-enabled CARs (meCARs) were generated by amino acid substitutions to create binding sites for meditope peptide (meP) within the Fab tumor targeting domain of the CAR. meCAR expression was validated by anti-Fc FITC or meP-Alexa 647 probes. In vitro and in vivo assays were performed and compared to standard scFv CAR T cells. For meCAR T cell proliferation and dual-targeting assays, the meditope peptide (meP) was conjugated to recombinant human IL15 fused to the CD215 sushi domain (meP-IL15:sushi) and anti-CD20 monoclonal antibody rituximab (meP-rituximab).ResultsWe generated meCAR T cells targeting HER2, CD19 and HER1/3 and demonstrate the selective specific binding of the meditope peptide along with potent meCAR T cell effector function. We next demonstrated the utility of a meP-IL15:sushi for enhancing meCAR T cell proliferation in vitro and in vivo. Proliferation and persistence of meCAR T cells was dose dependent, establishing the ability to regulate CAR T cell expansion using the meditope platform. We also demonstrate the ability to redirect meCAR T cells tumor killing using meP-antibody adaptors. As proof-of-concept, meHER2-CAR T cells were redirected to target CD20+ Raji tumors, establishing the potential of the meditope platform to alter the CAR specificity and overcome tumor heterogeneity.ConclusionsOur studies show the utility of the meCAR platform for overcoming key challenges for CAR T cell therapy by specifically regulating CAR T cell functionality. Specifically, the meP-IL15:sushi enhanced meCAR T cell persistence and proliferation following adoptive transfer in vivo and protects against T cell exhaustion. Further, meP-ritiuximab can redirect meCAR T cells to target CD20-tumors, showing the versatility of this platform to address the tumor antigen escape variants. Future studies are focused on conferring additional ‘add-on’ functionalities to meCAR T cells to potentiate the therapeutic effectiveness of CAR T cell therapy.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 3931-3931
Author(s):  
Martina Fontaine ◽  
Benjamin Demoulin ◽  
Simon Bornschein ◽  
Susanna Raitano ◽  
Steve Lenger ◽  
...  

Background The Natural Killer Group 2D (NKG2D) receptor is a NK cell activating receptor that binds to eight different ligands (NKG2DL) commonly over-expressed in cancer, including MICA and MICB. The product candidate CYAD-01 are chimeric antigen receptor (CAR) T-cells encoding the full length human NKG2D fused to the intracellular domain of CD3ζ. Data from preclinical models have shown that CYAD-01 cells specifically target solid and hematological tumors. Encouraging preliminary results from the Phase I clinical trial THINK, assessing CYAD-01 safety, showed initial signals of objective clinical responses in patients with r/r AML and MDS. The clinical development of CAR T-cells has been limited by several challenges including achieving sufficient numbers of cells for clinical application. We have previously shown that NKG2D ligands are transiently expressed on activated T cells and that robust cell yields are generated through the addition of a blocking antibody and a PI3K inhibitor during cell manufacture. Here, we investigated the ability of an optimized short hairpin RNA (shRNA) technology to modulate NKG2DL expression on CYAD-01 cells and to determine if there is an increase in the anti-tumor activity of NKG2D-based CAR T-cells (termed CYAD-02). Methods Molecular and cellular analyses identified MICA and MICB as the key NKG2DL expressed on activated T-cells and highly likely to participate in driving fratricide. In silico analysis and in vitro screening allowed the identification of a single shRNA targeting the conserved regions of MICA and MICB, thus downregulating both MICA and MICB expression. The selected shRNA was incorporated in the NKG2D-based CAR vector, creating the next-generation NKG2D-based CAR T-cell candidate, CYAD-02. In addition, truncated versions of the NKG2D receptor were generated to explore the mechanisms of action of NKG2D receptor activity in vivo. The in vivo persistence and anti-tumor activity of CYAD-02 cells was evaluated in an aggressive preclinical model of AML. Results Injection of CAR T-cells bearing truncated forms of the NKG2D-CAR in immunosuppressed mice resulted in similar persistence to the control T-cells. In contrast, CYAD-01 cells had reduced persistence, suggesting that the recognition of the NKG2DL by the NKG2D receptor could contribute to this effect. Analysis of cell phenotype upon CAR T-cell activation showed that MICA and MICB were transiently expressed on T-cells during manufacturing. These results collectively suggested that downregulating MICA and MICB expression in CYAD-01 cells could be a mean to increase CAR T-cell persistence in vivo. Candidate shRNA were screened for efficient targeting of both MICA and MICB at the mRNA and protein level. T-cells transduced with a single vector encoding for the NKG2D-based CAR and the selected shRNA targeting MICA and MICB (CYAD-02) demonstrated 3-fold increased expansion during in vitro culture in the absence of the blocking antibody used to increase cell yield during manufacture. When injected into immunosuppressed mice, CYAD-02 cells generated with the Optimab process showed 10-fold higher engraftment one week after injection and potent anti-tumor activity resulting in 2.6-fold increase of mouse survival in an aggressive AML model. Conclusions By using a single vector encoding the NKG2D-based CAR next to a shRNA targeting MICA and MICB and combined with improved cell culture methods, CYAD-02, the next-generation of NKG2D-based CAR T-cells, demonstrated enhanced in vivo persistence and anti-tumor activity. Following FDA acceptance of the IND application, a Phase 1 dose-escalation trial evaluating the safety and clinical activity of CYAD-02 for the treatment of r/r AML and MDS is scheduled to start in early 2020. Disclosures Fontaine: Celyad: Employment. Demoulin:Celyad: Employment. Bornschein:Celyad: Employment. Raitano:Celyad: Employment. Machado:Horizon Discovery: Employment. Moore:Avvinity Therapeutics: Employment, Other: Relationship at the time the work was performed; Horizon Discovery: Employment, Equity Ownership, Other: Relationship at the time the work was performed; Centauri Therapeutics: Consultancy, Other: Current relationship. Sotiropoulou:Celyad: Employment. Gilham:Celyad: Employment.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaojuan Shi ◽  
Daiqun Zhang ◽  
Feng Li ◽  
Zhen Zhang ◽  
Shumin Wang ◽  
...  

AbstractAsparagine-linked (N-linked) glycosylation is ubiquitous and can stabilize immune inhibitory PD-1 protein. Reducing N-linked glycosylation of PD-1 may decrease PD-1 expression and relieve its inhibitory effects on CAR-T cells. Considering that the codon of Asparagine is aac or aat, we wondered if the adenine base editor (ABE), which induces a·t to g·c conversion at specific site, could be used to reduce PD-1 suppression by changing the glycosylated residue in CAR-T cells. Our results showed ABE editing altered the coding sequence of N74 residue of PDCD1 and downregulated PD-1 expression in CAR-T cells. Further analysis showed ABE-edited CAR-T cells had enhanced cytotoxic functions in vitro and in vivo. Our study suggested that the single base editors can be used to augment CAR-T cell therapy.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Lintao Liu ◽  
Enguang Bi ◽  
Xingzhe Ma ◽  
Wei Xiong ◽  
Jianfei Qian ◽  
...  

AbstractCAR-T cell therapy is effective for hematologic malignancies. However, considerable numbers of patients relapse after the treatment, partially due to poor expansion and limited persistence of CAR-T cells in vivo. Here, we demonstrate that human CAR-T cells polarized and expanded under a Th9-culture condition (T9 CAR-T) have an enhanced antitumor activity against established tumors. Compared to IL2-polarized (T1) cells, T9 CAR-T cells secrete IL9 but little IFN-γ, express central memory phenotype and lower levels of exhaustion markers, and display robust proliferative capacity. Consequently, T9 CAR-T cells mediate a greater antitumor activity than T1 CAR-T cells against established hematologic and solid tumors in vivo. After transfer, T9 CAR-T cells migrate effectively to tumors, differentiate to IFN-γ and granzyme-B secreting effector memory T cells but remain as long-lived and hyperproliferative T cells. Our findings are important for the improvement of CAR-T cell-based immunotherapy for human cancers.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 3721-3721
Author(s):  
Yinmeng Yang ◽  
Christopher Daniel Chien ◽  
Elad Jacoby ◽  
Haiying Qin ◽  
Waleed Haso ◽  
...  

Abstract Adoptive therapy using T cells genetically engineered to express chimeric antigen receptors (CAR) has proven extremely effective against acute lymphoblastic leukemia (ALL) in clinical trials with the use of anti-CD19 CAR T cells. Most CAR T cell protocols use autologous T cells, which are then activated, transduced with the anti-CD19 CAR, and expanded ex-vivo before infusion back into the patient. This approach minimizes the risk of graft-versus-host disease (GVHD) even in allogeneic transplant recipients, due to tolerization of the donor T cell repertoire in the recipient. However, many patients have heavy disease burden and lymphopenia due to previous treatments, which makes the isolation of healthy T cells difficult. Thus, centers are exploring the potential of allogeneic T cell donors and the possibility of universal T cell donors for CAR-based therapy including the use of virus-specific T cells. In these cases, in addition to the chimeric receptor specificity, the transduced T cell population will also have reactivity against target antigens through the endogenous TCR. However, little is known about the impact of signaling of the endogenous TCR on CAR T cell activity, particularly in vivo. To test this, we used a syngeneic transplantable ALL murine model, E2aPBx, in which CD19 CAR T cells can effectively eradicate ALL. CD4 (Marilyn) and CD8 (Matahari) T cells from syngeneic HY-TCR transgenic donors specific for the minor histocompatibility male antigen, HY, were used as CAR T cell donors to control for endogenous TCR reactivity. Splenic T cells isolated from Matahari, Marilyn, or B6 mice were activated ex-vivo using anti-CD3/anti-CD28 beads, with the addition of IL2 and IL7. T cells were transduced with a retroviral vector expressing a murine CAR composed of anti-CD19 scfv/CD28/CD3ζ on days two and three. CAR T cells are evaluated in vitro by CD107a degranulation assay and INF gamma ELISA. In response to HY peptide alone or HY+CD19- line M39M, transduced CD8 HY (Matahari) cells produced IFN gamma and expressed CD107a whereas transduced CD4 HY (Marilyn) cells only produced IFN gamma. Interestingly, in response to CD19+HY- ALL, both Matahari and Marilyn expressed CD107a and produced IFN gamma indicating that CD4 T cells can acquire CD8-like lytic activity when stimulated through a CAR receptor. When CD19 CAR transduced Marilyns and Mataharis were stimulated in the presence of HY and CD19, CD8 Mataharis had an attenuated effect against CD19, suggesting that the presence of antigen activated TCR adversely affects the potency of the CAR receptor. Efficacy of the HY and polyclonal CAR T cells were next tested in-vivo in male and female B6 mice. Mice were given 1E6 E2aPBx ALL leukemia cells on day 1, and received 500 rads sub-lethal total body irradiation on day 4 as a lymphodepleting regimen. On day 5, mice were given a low (1E5) or high (5E6) dose of CAR T cells. There was a statistically significant (p=0.0177) improvement in the survival of female versus male mice after treatment with the CD4+ HY specific anti-CD19 CAR T cells, and female mice that received HY anti-CD19 CAR T cells survived longer than untreated control females (p=0.01). Remarkably, the survival of male mice that received HY anti-CD19 CAR T cells was statistically worse than untreated control males (p=0.008). This suggests that the presence of TCR antigen negatively impacts the function of CAR T cells. Furthermore, in a separate experiment using an equally mixed population of Marilyn (CD4+) and Matahari (CD8+) HY specific T cells, males has a statistically significantly (p=0.0116) worse survival compared to females after receiving 5E5 HY specific T cells. In conclusion, simultaneous stimulation through both CAR and TCR results in attenuated cytokine production and degranulation by CD8 T cells. In vivo, in the presence of the endogenous TCR antigen, both CD4 and CD8 CAR T cells are less potent at eradicating leukemia. These have implications for the development of universal donors for CAR T cell therapy. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3231-3231 ◽  
Author(s):  
Jim Qin ◽  
Alex Baturevych ◽  
Sherri Mudri ◽  
Ruth Salmon ◽  
Michael Ports

Abstract Chronic lymphocytic leukemia (CLL) drives systemic immune suppression and T cell dysfunction in patients, highlighting an important consideration in this setting for the manufacturing and efficacy of adoptive cell therapies using autologous T cells. In clinical studies, anti-CD19 CAR-T cells produce durable and complete responses in leukemic and some lymphomatous B cell malignancies. While preconditioning with cyclophosphamide (Cy) and fludarabine (Flu) has improved CAR-T responses in CLL patients, reported complete response rates still have been below 50%; additional therapeutic strategies likely will be required. Ibrutinib, an irreversible inhibitor of BTK, has been approved as a frontline treatment option for patients with CLL. The potent off-BTK activity of ibrutinib on ITK and TEC family kinases could affect CAR T cell biology. Recent work highlighted the ability of ibrutinib to restore CLL patient T cell functionality, enhance CAR-T production and potentially improve clinical efficacy. Additional preclinical work demonstrated improved tumor clearance when anti-CD19 CAR T cells were combined with ibrutinib in several murine tumor models. A preclinical evaluation of the combination between the anti-CD19 CAR-T product, JCAR017, and ibrutinib was performed to determine feasibility for clinical use in CLL. JCAR017 is a second generation CAR-T cell product candidate that contains a 41BB costimulatory endo-domain and is currently in phase 1 trials for non-Hodgkin lymphoma (NHL). A series of in vitro studies assessed the functional activity of JCAR017 cells (derived from 3 healthy donors), in combination with ibrutinib (500-0.05nM), across a dose range covering the cMax and cMin. Cytolytic activity was monitored by co-culturing CAR-T cells with ibrutinib-resistant K562 CD19 tumor cells at an effector-to-target ratio of 2.5:1. Ibrutinib, at concentrations tested, did not inhibit the cytolytic function of JCAR017 cells. For cells derived from some donors, addition of ibrutinib appeared to increase % target killing. To address ibrutinib effects on JCAR017 activation, cell surface markers and cytokines were tracked over 4 days following stimulation with irradiated K562 CD19 cells. We observed no significant effect on JCAR017 surface expression of CD25, CD38, CD39, CD95, CD62L, CCR7, or CD45RO, or of EGFRt, a surrogate transduction marker. With addition of ibrutinib, we observed a modest decrease in the percentage of cells expressing CD69, CD107a and PD-1. With 5 and 50nM of ibrutinib, there was a 19.5% (p<0.01) average increase in IFNγ production. At supraphysiological concentrations (500nM) we observed a 20% (p<0.05) decrease in IL-2 production, suggesting ibrutinib at high concentrations may dampen T cell activation. CAR-T cell expansion after repeated antigen stimulation has been shown to be a predictor of in vivo efficacy. JCAR017 cells stimulated every 3-4 days with irradiated target cells in the presence of ibrutinib showed no inhibition of initial growth. However, after 5 rounds of stimulation, JCAR017 + ibrutinib cells from 1 donor had enhanced proliferation compared to control, untreated cells (p<0.05). Interestingly, after 5 rounds of serial stimulation, we observed an increased proportion of CD4+CXCR3+CRTh2- Th1 cells with 500nM ibrutinib treatment compared to control (p<0.01). We assessed the in vivo anti-tumor activity of JCAR017 in combination with ibrutinib using NSG mice injected with 5x105 Nalm6-luciferase cells. After tumor engraftment, a suboptimal dose (5x105) of JCAR017 cells was transferred to mice and ibrutinib (25 mg/kg qd) was administered for the duration of the study. Ibrutinib treatment alone had no effect on tumor burden compared to vehicle treatment. Mice treated with a suboptimal JCAR017 dose + ibrutinib showed decreased tumor burden (p<0.05) and increased median survival from 44 days to >80 days (p<0.001) compared to the group receiving the suboptimal JCAR017 dose + vehicle. Similar effects were seen in replicate studies using JCAR017 cells produced from multiple donors. Ex vivo evaluation for CAR-T quantitation and immunophenotyping was also performed. Taken together, the results suggest that ibrutinib enhances intrinsic JCAR017 activity and may improve outcomes in CLL patients treated with anti-CD19 CAR T therapy, irrespective of BTK mutational status. A Phase 1b study of JCAR017 in combination with ibrutinib for BTKi R/R CLL is planned. Disclosures Qin: Juno Therapeutics: Employment. Baturevych:Juno Therapeutics: Employment. Mudri:Juno Therapeutics: Employment, Equity Ownership. Salmon:Juno Therapeutics: Employment. Ports:Juno Therapeutics: Employment.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2776-2776
Author(s):  
Salvatore Fiorenza ◽  
George S. Laszlo ◽  
Tinh-Doan Phi ◽  
Margaret C. Lunn ◽  
Delaney R. Kirchmeier ◽  
...  

Abstract Background: There is increasing interest in targeting CD33 in malignant and non-malignant disorders, but available drugs are ineffective in many patients. As one limitation, therapeutic CD33 antibodies typically recognize the membrane-distal V-set domain. Likewise, currently tested CD33-directed chimeric antigen receptor (CAR) T cells likewise target the V-set domain and have thus far shown limited clinical activity. We have recently demonstrated that binding closer to the cell membrane enhances the effector functions of CD33 antibodies. We therefore raised antibodies against the membrane-proximal C2-set domain of CD33 and identified antibodies that bound CD33 regardless of the presence/absence of the V-set domain ("CD33 PAN antibodies"). Here, we tested their properties as targeting moiety in CD33 PAN CAR T cell constructs, using a clinically validated lentiviral backbone. Methods: To generate CAR T cells, negatively selected CD8 + T cells were transduced with an epHIV7 lentivirus encoding the scFv from a CD33 PAN antibody (clone 1H7 or 9G2) linked to either a short (IgG 4 hinge only), intermediate (hinge plus IgG 4 CH3 domain), or long (hinge plus IgG 4 CH3 domain plus IgG 4 CH2 domain) spacer, the CD28-transmembrane domain, CD3zeta and 4-1BB intracellular signaling domains, and non-functional truncated CD19 (tCD19) as transduction marker. Similar constructs using scFvs from 2 different V-set domain-targeting CD33 antibodies, including hP67.6 (My96; used in gemtuzumab ozogamicin), were generated for comparison. CAR-T cells were sorted, expanded in IL-7 and IL-15, and used in vitro or in vivo against human AML cell lines endogenously expressing CD33 and cell lines engineered to lack CD33 (via CRISPR/Cas9) with/or without forced expression of different CD33 variants. Results: CD33 V-set-directed CAR T cells exerted significantly more cytolytic activity against AML cells expressing an artificial CD33 variant lacking the C2-set domain (CD33 ΔE3-4) than cells expressing full-length CD33 at similar or higher levels, consistent with the notion that CD33 CAR T cell efficacy is enhanced when targeting an epitope that is located closer to the cell membrane. CD33 PAN CAR T cells were highly potent against human AML cells in a strictly CD33-dependent fashion, with constructs containing the short and intermediate-length spacer demonstrating robust cytokine secretion, cell proliferation, and in vitro cytolytic activity, as determined by 51Cr release cytotoxicity assays. When compared to optimized CD33 V-set CAR T cells, optimized CD33 PAN CAR T cells were significantly more potent in cytotoxicity, proliferation, and cytokine production without appreciably increased acquisition of exhaustion markers. In vivo, CD33 PAN CAR T cells extended survival in immunodeficient NOD.SCID. IL2rg -/- (NSG) mice bearing significant leukemic burdens from various cell line-derived xenografts (HL-60, KG1α and MOLM14) with efficient tumor clearance demonstrated in a dose-dependent fashion. Conclusion: Targeting the membrane proximal domain of CD33 enhances the anti-leukemic potency of CAR T cells. Our data provide the rationale for the further development of CD33 PAN CAR T cells toward clinical testing. Disclosures Fiorenza: Link Immunotherapeutics: Consultancy; Bristol Myers Squibb: Research Funding. Godwin: Pfizer: Research Funding; Bristol Myers Squibb: Current Employment, Current equity holder in publicly-traded company. Turtle: Allogene: Consultancy; Amgen: Consultancy; Arsenal Bio: Consultancy; Asher bio: Consultancy; Astrazeneca: Consultancy, Research Funding; Caribou Biosciences: Consultancy, Current holder of individual stocks in a privately-held company; Century Therapeutics: Consultancy, Other; Eureka therapeutics: Current holder of individual stocks in a privately-held company, Other; Juno therapeutics/BMS: Patents & Royalties, Research Funding; Myeloid Therapeutics: Current holder of individual stocks in a privately-held company, Other; Nektar therapeutics: Consultancy, Research Funding; PACT Pharma: Consultancy; Precision Biosciences: Current holder of individual stocks in a privately-held company, Other; T-CURX: Other; TCR2 Therapeutics: Research Funding. Walter: Kite: Consultancy; Janssen: Consultancy; Genentech: Consultancy; BMS: Consultancy; Astellas: Consultancy; Agios: Consultancy; Amphivena: Consultancy, Other: ownership interests; Selvita: Research Funding; Pfizer: Consultancy, Research Funding; Jazz: Research Funding; Macrogenics: Consultancy, Research Funding; Immunogen: Research Funding; Celgene: Consultancy, Research Funding; Aptevo: Consultancy, Research Funding; Amgen: Research Funding.


Sign in / Sign up

Export Citation Format

Share Document