scholarly journals LRRC15 Targeting in Soft-Tissue Sarcomas: Biological and Clinical Implications

Cancers ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 757 ◽  
Author(s):  
Eytan Ben-Ami ◽  
Raul Perret ◽  
Ying Huang ◽  
Félicie Courgeon ◽  
Prafulla C. Gokhale ◽  
...  

Background: LRRC15 is a member of the LRR (leucine-rich repeat) superfamily present on tumor-associated fibroblasts (CAFs) and stromal cells. The expression of LRRC15 is upregulated by the pro-inflammatory cytokine TGFβ. ABBV-085 is a monomethyl auristatin E (MMAE)-containing antibody-drug conjugate (ADC) designed to target LRRC15, and which has shown significant anti-tumor activity in several tumor models. This is the first focused examination of LRRC15 expression and ABBV-085 activity in soft-tissue sarcomas (STS). Methods: We analyzed the LRRC15 expression profile by immunohistochemistry in 711 STS cases, covering a broad spectrum of STS histologies and sub-classifications. In vivo experiments were carried out by using LRRC15-positive and LRRC15-negative patient-derived xenograft (PDX) models of STS. Results: In contrast to patterns observed in epithelial tumors, LRRC15 was expressed not only by stromal cells but also by cancer cells in multiple subsets of STS with significant variations noted between histological subtypes. Overexpression of LRRC15 is positively correlated with grade and independently associated with adverse outcome. ABBV-085 has robust preclinical efficacy against LRRC15 positive STS patient-derived xenograft (PDX) models. Conclusion: We provide the first preclinical evidence that LRRC15 targeting with an antibody-drug conjugate is a promising strategy in LRRC15-positive STS. ABBV-085 is being evaluated in an ongoing clinical trial in STS and other malignancies.

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mark G. Anderson ◽  
Qian Zhang ◽  
Luis E. Rodriguez ◽  
Claudie M. Hecquet ◽  
Cherrie K. Donawho ◽  
...  

Abstract Background Prolactin receptor (PRLR) is an attractive antibody therapeutic target with expression across a broad population of breast cancers. Antibody efficacy, however, may be limited to subtypes with either PRLR overexpression and/or those where estradiol no longer functions as a mitogen and are, therefore, reliant on PRLR signaling for growth. In contrast a potent PRLR antibody-drug conjugate (ADC) may provide improved therapeutic outcomes extending beyond either PRLR overexpressing or estradiol-insensitive breast cancer populations. Methods We derived a novel ADC targeting PRLR, ABBV-176, that delivers a pyrrolobenzodiazepine (PBD) dimer cytotoxin, an emerging class of warheads with enhanced potency and broader anticancer activity than the clinically validated auristatin or maytansine derivatives. This agent was tested in vitro and in vivo cell lines and patient derived xenograft models. Results In both in vitro and in vivo assays, ABBV-176 exhibits potent cytotoxicity against multiple cell line and patient-derived xenograft breast tumor models, including triple negative and low PRLR expressing models insensitive to monomethyl auristatin (MMAE) based PRLR ADCs. ABBV-176, which cross links DNA and causes DNA breaks by virtue of its PBD warhead, also demonstrates enhanced anti-tumor activity in several breast cancer models when combined with a poly-ADP ribose polymerase (PARP) inhibitor, a potentiator of DNA damage. Conclusions Collectively the efficacy and safety profile of ABBV-176 suggest it may be an effective therapy across a broad range of breast cancers and other cancer types where PRLR is expressed with the potential to combine with other therapeutics including PARP inhibitors.


2021 ◽  
Author(s):  
Keiji Furuuchi ◽  
Katherine Rybinski ◽  
James Fulmer ◽  
Tomoyuki Moriyama ◽  
Brian Drozdowski ◽  
...  

Haematologica ◽  
2020 ◽  
Vol 105 (11) ◽  
pp. 2584-2591 ◽  
Author(s):  
Eugenio Gaudio ◽  
Chiara Tarantelli ◽  
Filippo Spriano ◽  
Francesca Guidetti ◽  
Giulio Sartori ◽  
...  

Antibody drug conjugates represent an important class of anti-cancer drugs in both solid tumors and hematological cancers. Here, we report preclinical data on the anti-tumor activity of the first-in-class antibody drug conjugate MEN1309/OBT076 targeting CD205. The study included preclinical in vitro activity screening on a large panel of cell lines, both as single agent and in combination and validation experiments on in vivo models. CD205 was first shown frequently expressed in lymphomas, leukemias and multiple myeloma by immunohistochemistry on tissue microarrays. Anti-tumor activity of MEN1309/OBT076 as single agent was then shown across 42 B-cell lymphoma cell lines with a median IC50 of 200 pM and induction of apoptosis in 25/42 (59.5%) of the cases. The activity appeared highly correlated with its target expression. After in vivo validation as the single agent, the antibody drug conjugate synergized with the BCL2 inhibitor venetoclax, and the anti-CD20 monoclonal antibody rituximab. The first-in-class antibody drug targeting CD205, MEN1309/OBT076, demonstrated strong pre-clinical anti-tumor activity in lymphoma, warranting further investigations as a single agent and in combination.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 877-877
Author(s):  
Yu-Tzu Tai ◽  
Chirag Acharya ◽  
Mike Y Zhong ◽  
Michele Cea ◽  
Antonia Cagnetta ◽  
...  

Abstract B cell maturation antigen (BCMA), which is highly expressed on malignant plasma cells in human multiple myeloma (MM), has not been effectively targeted with therapeutic monoclonal antibodies (mAbs). We here investigated the anti-MM activity of J6M0-mcMMAF (GSK2857916), a humanized and afucosylated anti-BCMA antibody-drug conjugate (ADC) via uncleavable linker. This novel antagonist anti-BCMA antibody shows binding against all CD138-expressing MM cell lines (n=13) and patient MM cells (n=18), confirming universal BCMA expression on the surface of myeloma cells. Real-time qRT-PCR also showed significantly upregulated BCMA mRNA in CD138+ cells purified from MM patients vs. normal donors (p < 0.03). In contrast, BCMA is undetectable in CD138-negative cells from MM patients (n=3). J6M0-mcMMAF strongly blocks cell growth and induces caspase 3-dependent apoptosis in both drug-sensitive and -resistant MM cell lines and patient CD138+ MM cells, alone and in co-culture with BMSCs. In contrast, an isotype control antibody-drug conjugate (iso-mcMMAF) had no effect on viability of ANBL6 MM cells, alone or cocultured with BMSC. J6M0-mcMMAF specifically induces cell death in CD138-positive patient MM cells but not CD138-negative cells, demonstrating the minimal bystander killing against surrounding BCMA-negative cells. J6M0-mcMMAF completely blocks colony formation of MM cell lines (n=6) via induction of G2/M arrest, followed by apoptosis. This ADC does not affect viability of BCMA-negative NK, PBMC, and BMSCs, cultured alone or together, confirming its specific targeting of BCMA-positive MM cells. J6M0-mcMMAF, which has enhanced Fc-receptor binding due to afucosylation, significantly improved autologous antibody-dependent cellular cytotoxicity (ADCC) potency and maximum MM cell lysis against MM patient cells (n=5), when compared to J6M0 with normal Fc. Such augmented ADCC and maximum patient MM cell lysis by J6M0-mcMMAFis more pronounced in the autologous setting vs. the allogenic setting where MM cells and healthy donor effectors were used. Pretreatment of PBMC effector cells with lenalidomide further increased J6M0-mcMMAF-induced ADCC against MM cells in the presence or absence of BMSC. The in vivo efficacy of J6M0-mcMMAF was evaluated in murine subcutaneous xenograft models using NCI-H929 and OPM2 cells, as well as in NK-deficient SCID-beige mice with diffuse human MM bone lesions using MM1Sluc cells. Administration of J6M0-mcMMAF at 4 mg/kg (q3d x 4, ip) completely eliminated NCI-H929 and OPM2 xenograft tumors in all mice which remained tumor-free until the termination of studies at 60 and 100 days, respectively. In the MM1Sluc bone marrow dissemination model, J6M0-mcMMAF eradicates detectable tumors after 2 doses at 0.4 mg/kg (q3d x 9, ip), which resulted in extended survival (p<0.0001) and no weight loss of mice following 120 days. J6M0 treatment, although less effective than J6M0-mcMMAF, also had significantly prolonged survival (p<0.03) and diminished tumor burden when compared with control vehicle and isotype-treated groups, indicating a potential role of macrophage-mediated phagocytosis. Indeed, J6M0-mcMMAF recruits macrophage and mediates phagocytosis of target MM cells. Taken together, our studies show that J6M0-mcMMAF potently and selectively induce direct and indirect killing of MM tumor cells both in vitro and in vivo, providing a very promising next-generation immunotherapeutic in this cancer. Disclosures: Tai: Onyx: Consultancy. Mayes:GlaxoSmithKline: Employment. Craigen:GlaxoSmithKline: Employment. Gliddon:GlaxoSmithKline: Employment. Smothers:GlaxoSmithKline: Employment. Richardson:Millenium: Consultancy; Celgene: Consultancy; Johnson & Johnson: Consultancy; Bristol-Myers Squibb: Consultancy; Novartis: Consultancy. Munshi:Celgene: Consultancy; Novartis: Consultancy; Millennium: Consultancy. Anderson:celgene: Consultancy; onyx: Consultancy; gilead: Consultancy; sanofi aventis: Consultancy; oncopep: Equity Ownership; acetylon: Equity Ownership.


2020 ◽  
Author(s):  
Robyn M. Barfield ◽  
Yun Cheol Kim ◽  
Stepan Chuprakov ◽  
Fangjiu Zhang ◽  
Maxine Bauzon ◽  
...  

AbstractTrastuzumab and the related antibody-drug conjugate (ADC), ado-trastuzumab emtansine (T-DM1), both target HER2-overexpressing cells. Together, these drugs have treatment indications in both early-stage and metastatic settings for HER2+ breast cancer. T-DM1 retains the antibody functionalities of trastuzumab and adds the potency of a cytotoxic maytansine payload. Interestingly, in the clinic, T-DM1 cannot always replace the use of trastuzumab plus chemotherapy administered together as single agents. We hypothesize that this failure may be due in part to the limited systemic exposure achieved by T-DM1 relative to trastuzumab because of toxicity-related dosing constraints on the ADC. We have developed a trastuzumab-based ADC site-specifically conjugated to maytansine through a noncleavable linker. This construct, termed CAT-01-106, has a drug-to-antibody ratio (DAR) of 1.8, approximately half the average DAR of T-DM1, which comprises a mixture of antibodies variously conjugated with DARs ranging from 0-8. The high DAR species present in T-DM1 contribute to its toxicity and limit its clinical dose. CAT-01-106 showed superior in vivo efficacy compared to T-DM1 at equal payload dosing and was equally or better tolerated compared to T-DM1 at equal payload dosing up to 120 mg/kg in Sprague-Dawley rats and 60 mg/kg in cynomolgus monkeys. CAT-01-106 also showed improved pharmacokinetics in rats relative to T-DM1, with 40% higher ADC exposure levels. Together, the data suggest that CAT-01-106 may be sufficiently tolerable to enable clinical dosing at trastuzumab-equivalent exposure levels, combining the functions of both the antibody and the payload in one drug and potentially improving patient outcomes.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e14009-e14009
Author(s):  
Gulden Menderes ◽  
Elena Bonazzoli ◽  
Stefania Bellone ◽  
Jonathan Black ◽  
Gary Altwerger ◽  
...  

e14009 Background: Epithelial ovarian cancer (EOC) is the most lethal gynecological cancer. HER2 overexpression/amplification in EOC show considerable variation ranging from 8% to 66%. SYD985 (Synthon Biopharmaceuticals BV, Nijmegen, the Netherlands) is a novel HER2-targeting antibody-drug conjugate (ADC) composed of the monoclonal antibody (mAb) trastuzumab linked to a highly potent DNA-alkylating agent (i.e., duocarmycin). The objective of this study was to compare the anti-tumor activity of SYD985 to trastuzumab emtansine (T-DM1) in EOC. Methods: The cytotoxicity of SYD985 and T-DM1 was evaluated using ten primary EOC cell lines with 0/1+, 2+, and 3+ HER2/neu expression in antibody-dependent cellular cytotoxicity (ADCC), proliferation, viability and bystander killing experiments. Finally, the in vivo activity of SYD985 and T-DM1 was also studied in ovarian cancer xenografts. Results: SYD985 and T-DM1 induced similar ADCC in the presence of effector cells [i.e., peripheral blood lymphocytes (PBL)] against EOC cell lines with high, moderate and low HER2/neu expression. In contrast, SYD985 was 3 to 42 fold more cytotoxic in the absence of PBL when compared to T-DM1. Specifically, in HER2/neu 1+ cell lines the mean IC50’s were 0.072 µg/mL and 3.035 µg/mL for SYD985 vs T-DM1 (p < 0.0001), in HER2/neu 2+ cell lines 0.054 µg/mL and 1.168 µg/mL, (p < 0.0001) and in HER2/neu 3+ cell lines 0.024 µg/mL and 0.088 µg/mL, respectively, (p < 0.0001). Unlike T-DM1, SYD985 induced efficient bystander killing of HER2/neu 0/1+ EOC cells admixed with HER2/neu 3+ cells. In vivo studies confirmed that SYD985 is more active than T-DM1 in EOC and effective against HER2/neu 3+ xenografts. Additional (HER2/neu 2+ & 1+) EOC xenograft studies are ongoing. Conclusions: SYD985 is a novel ADC with remarkable in vitro activity against EOC with strong (3+) as well as low to moderate (i.e., 1+/2+) HER2/neu expression. SYD985 is more potent than T-DM1 in comparative experiments and unlike T-DM1, it may be active against EOC demonstrating moderate/low or heterogeneous HER2/neu expression. Clinical studies with SYD985 in EOC patients harboring chemo-resistant disease are needed.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 5623-5623
Author(s):  
Andrew Hau ◽  
Tong Zhu ◽  
Rengang Wang ◽  
Megan Lau ◽  
Lingna Li ◽  
...  

BCMA (B-cell maturation antigen) is an integral membrane protein that belongs to the TNF receptor family with expression restricted to B cell lineage cells. The RNA is near universally detected in multiple myeloma (MM) cells and the protein is expressed on the surface of malignant plasma cells from patients with MM. In contrast, BCMA expression in normal tissues is very limited, making BCMA a promising target for antibody-drug conjugate (ADC) therapy. We have developed a BCMA-targeting ADC, employing a fully human anti-BCMA monoclonal antibody (mAb) identified from Sorrento's G-MAB antibody library, which was conjugated using proprietary Concortis linker-Duo 5.2 toxin technology resulting in BCMA-077 ADC. The mAb has a unique binding profile for BCMA and demonstrated strong preferential binding for BCMA-overexpressing cells but showed much less binding to lower BCMA-expressing cells. This property allows for more selective binding of the ADC on high BCMA-expressing cells, which are usually tumor cells while sparing low BCMA-expressing normal cells. In addition, we modified the Duo 5.2 payload decreasing the potency of the unconjugated toxin while retaining activity when conjugated to the mAb. The resulting ADC, BCMA-024, was compared to BCMA-077 using in vitro assays, including binding, internalization and cytotoxicity against tumor cell lines. The two ADCs exhibited strong activity and no difference in cytotoxic potency evident. The toxicity of the payload derivative was evaluated in a rodent model and it was found to be well tolerated not showing toxicity at a dose 10 times higher than the lethal dose of the parental toxin. Both ADCs carrying either the parental Duo 5.2 toxin or the derivative toxin payload were evaluated in vivo for anti-tumor activity in three different multiple myeloma xenograft models using different dose regimens. The data showed that both ADCs demonstrated potent BCMA-dependent in vivo anti-tumor activity in all xenograft BCMA-positive tumor models. The PK of the parental anti-BCMA mAb was investigated in non-human primates (NHP) and the parameters indicated a T1/2 of about 10 days. The GLP toxicity studies are ongoing. Our BCMA-ADCs have shown favorable anti-tumor activities combined with good safety profiles resulting in an expanded therapeutic window. The data make BCMA-077 and BCMA-024 promising candidates for continued preclinical development. Based on the totality of our preclinical data, we anticipate selecting a BCMA ADC clinical candidate for the treatment of multiple myeloma. Disclosures Hau: Concortis Biotherapeutics: Employment, Equity Ownership. Zhu:Levena Biopharma: Employment, Equity Ownership, Patents & Royalties. Wang:Concortis Biotherapeutics: Employment, Equity Ownership. Lau:Levena Biopharma: Employment, Equity Ownership. Li:Concortis Biotherapeutics: Employment, Equity Ownership. Li:Levena Biopharma: Employment, Equity Ownership. Sun:Levena Biopharma: Employment, Equity Ownership. Kovacs:Levena Biopharma: Employment, Equity Ownership. Khasanov:Levena Biopharma: Employment, Equity Ownership. Deng:Levena Biopharma: Employment, Equity Ownership. Yan:Levena Biopharma: Employment, Equity Ownership. Knight:Sorrento Therapeutics, Inc.: Employment, Equity Ownership. Kaufmann:Sorrento Therapeutics, Inc.: Employment, Equity Ownership, Patents & Royalties. Ji:Sorrento Therapeutics Inc: Employment, Equity Ownership, Patents & Royalties; Celularity, Inc.: Equity Ownership, Membership on an entity's Board of Directors or advisory committees. Li:Levena Biopharma: Employment, Equity Ownership, Patents & Royalties; Sorrento Therapeutics, Inc.: Employment, Equity Ownership, Patents & Royalties. Zhang:Concortis Biotherapeutics: Employment, Equity Ownership, Patents & Royalties.


Author(s):  
Eugenio Gaudio ◽  
Chiara Tarantelli ◽  
Alberto J. Arribas ◽  
Roberta Pittau Bordone ◽  
Andrea Rinaldi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document